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Homomorphisms from AH-algebras

Huaxin Lin

Abstract

Let C be a general unital AH-algebra and let A be a unital simple C*-algebra with tracial
rank at most one. Suppose that ¢,9 : C' — A are two unital monomorphisms. We show
that ¢ and 1 are approximately unitarily equivalent if and only if

lp] = [¥] in KL(C,A),
wy = 1y and
ol = 9, (e0.1)

where @y and 1y are continuous affine maps from tracial state space T(A) of A to faithful
tracial state space T¢(C) of C induced by ¢ and v, respectively, and ¥ and % are induced
homomorphisms from K (C) into Aff(T(A))/pa(Ko(A)), where Aff(T'(A)) is the space of all
real affine continuous functions on T'(A) and pa(Ko(A)) is the closure of the image of K(A)
in the affine space Aff(T'(A4)). In particular, the above holds for C = C(X), the algebra
of continuous functions on a compact metric space. An approximate version of this is also
obtained. We also show that, given a triple of compatible elements x € KL.(C, A)**, an
affine map v : T(C) — T;(C) and a homomorphism « : K;(C) — Aff(T(A))/pa(Ko(A)),
there exists a unital monomorphism ¢ : C' — A such that [h] = &, hy = v and ¢! = a.

1 Introduction

Let X be a compact metric space and let A be a unital simple C*-algebra. Let ¢, ¢ : C(X) — A
be two homomorphisms. We study the problem when these two maps from C(X), the commu-
tative C*-algebra of continuous functions on X, into A are approximately unitarily equivalent,
i.e., when there exists a sequence of unitaries {u,} C A such that
lim wy ), (fun, = @(f) for all fe C(X).
n—oo

In the case that X is a compact subset of the plane and A is the n x n matrix algebra, two
such maps are unitarily equivalent if and only if the corresponding normal matrices have the
same set of eigenvalues (counting multiplicity). Brown-Douglass-Fillmore’s study of essentially
normal operators led to the following theorem: Two unital monomorphisms from C(X) (when
X is a compact subset of the plane) into the Calkin algebra are unitarily equivalent if and only
if they induce the same homomorphism from K;(C(X)) into Z. It should be noted that both
the n x n matrix algebra and the Calkin algebra are unital simple C*-algebras of real rank zero.

Unital separable commutative C*-algebras are of the form C(X) for some compact metric
space by the Gelfand transformation. Therefore the study of C*-algebras may be viewed as the
study of non-commutative topology. As in the topology, one studies continuous maps between
spaces, in C'*-algebra theory, one studies the homomorphisms from one C*-algebra to another.
In this point view, the study of homomorphisms from one C*-algebra to another is one of the
fundamental problems in the C*-algebra theory. At the present paper, we assume that the
target algebra is a unital simple C*-algebra, which conforms to the previous two mentioned
cases. Simple C*-algebras may also be viewed as the opposite end of commutative C*-algebras.
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For the source algebra, we begin with the case that it is the commutative C*-algebra following
the two above mentioned cases. However, we will study the case that source algebras are general
unital AH-algebras (They are not necessarily simple, nor of slow dimension growth).

Let ¢, ¢ : C(X) — A be two unital homomorphisms and let I = kerp. Then I = ker,
if ¢ and v are approximately unitarily equivalent. Therefore, one may study the induced
homomorphisms from C(X)/I instead. Note that C(X)/I is isomorphic to C(Y) for some
compact subset of X. To simplify the matter, we will only study monomorphisms. The problem
has been studied (for some earlier results, for example, see [§] and [9] ). Dadarlat ([2]) showed
that, if C' = C(X) and A is a unital purely infinite simple C*-algebra (such as Calkin algebra),
then two unital monomorphisms from C into A are approximately unitarily equivalent if and
only if they induce the same element in K L(C, A). When the target C*-algebras are finite, other
invariants such as traces have to be considered. When A is a unital simple C*-algebra with stable
rank one, real rank zero, weakly unperforated Ky(A) and a unique tracial state, it is shown in
[6] that ¢ and ¢ are approximately unitarily equivalent if and only if [¢] = [¢)] in KL(C(X), A)
and 7o ¢ = 7o 1. When the real rank of A is not zero one needs additional data to determine
when ¢ and 1 are approximately unitarily equivalent. In fact, it is shown ([I8]) that when C
is a some special unital AH-algebra and A is a unital simple C*-algebra with tracial rank at
most one, two unital monomorphisms ¢, : C — A are approximately unitarily equivalent if
and only [p] = [¢], py = ¥y and pt = ¥¥, where ¢y and ¥ will be defined below (1)) and (Z3).
The technical condition imposed on C'(X) is basically said that, K-theoretically speaking, C'(X)
has a lower rank. In this paper this restriction on AH-algebras has been removed. A complete
criterion is given for two unital monomorphisms from a general AH-algebra into a unital simple
C*-algebra with tracial rank at most one being approximately unitarily equivalent.

One may view the result of this paper is a generalization of that in [I8]. However, this
generalization have a number important applications. First, the improvement is based on the
proof of Theorem below. The proof of the main result in [I§] among many things uses
Theorem 3.2 of [18] which in turn, among other things, used the technical decomposition theorem
of Guihua Gong ([5]). Gong’s theorem has a very technical and long proof. The proof of this
paper does not require to use Gong’s decomposition theorem. Gong’s decomposition theorem
played the key role in the classification of unital simple AH-algebras with no dimension growth
([4]). While the classification theorem for unital simple separable amenable C*-algebras with
tracial rank at most one satisfying the UCT in [I5] do not require Gong’s theorem, however, it
is Gong’s decomposition theorem which shows that every unital simple AH-algebras with very
slow dimension growth have tracial rank at most one. As in [18], one sees that the main result of
this paper can be used to provide a proof of classification theorem for unital simple AH-algebras
with slow dimension growth. Therefore, one can now provide a proof of classification theorem
of unital simple AH-algebras with slow dimension growth without using the celebrated Gong’s
decomposition theorem ([21]).

There are much more than just shorten the proof. One of the long standing problems in the
classification theory is to classify locally AH-algebra with no dimension growth. The problem
could be solved if one could establish a version of Gong’s decomposition theorem which allows
maps that are not exactly homomorphisms. Over more than a decade, since the proof Gong’s
decomposition theorem first appeared, the technical difficulty to generalize it to include almost
multiplicative maps had remained elusive. This author’s many attempts failed during these
years. It is the desire to prove that unital simple locally AH-algebras with no dimension growth
can be classified by their Elliott invariant drew author’s attention again to Gong’s decomposition
theorem. One application of the results in this paper will be the proof that unital simple locally
AH-algebras with slow dimension growth are classifiable by the Elliott invariant ([21]).

Having stated the importance of the results in this paper in the connection of the Elliott pro-



gram of classification of amenable C*-algebras and their independence of Gong’s decomposition
theorem, making no mistake, however, we did not provide another proof of Gong’s decompo-
sition theorem, nor we provide a version of Gong’s decomposition theorem working for almost
multiplicative maps. Instead, we establish a so-called uniqueness theorem for almost multiplica-
tive maps from unital AH-algebras to unital simple C*-algebra with tracial rank at most one
(Theorem [5.3). Even without referring to Gong’s decomposition theorem and classification of
simple amenable C*-algebras, we believe that the main results presented here have their own
independent interest as discussed at the beginning of this introduction.

The paper is organized as follows: Section 2 serves largely as preliminaries for the whole
paper. In Section 3, we prove Theorem which is the main technical advance of this paper.
In Section 4, we collect a number of miscellaneous lemmas which will be used in the proof of
the main results. In Section 5, we prove the main results. To complete our results and make
application possible. In Section 6, we provide the description of range of approximate unitary
equivalence classes of unital monomorphisms from a unital AH-algebra to a unital simple C*-
algebra of tracial rank at most one. Applications to the study of tracial rank and classification
of unital simple locally AH-algebras will appear elsewhere ([21]).
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2 Preliminaries

2.1. Let A be a unital C*-algebra. Denote by T'(A) the convex set of tracial states of C. Denote
by T(A) the convex set of all faithful tracial states. Let Aff(T(A)) be the space of all real affine
continuous functions on T'(A). Denote by M,,(A) the matrixes over A. By regarding M,,(A) as a
subset of M,,11(A), define Moo (A) = U2 M, (A). If 7 € T(A), then 7 ®T'r, where tr is standard
trace on M, is a trace on M, (A). Throughout this paper, we will use 7 for 7 ® T'r without
warning.

If B is another C*-algebra and ¢ : A — B be a contractive completely positive linear
map, then ¢ ®idyy, gives a contractive completely positive linear map from M, (A) to M, (B).
Throughout this paper, we will use ¢ for ¢ ® idys, for convenience.

Let C and A be two unital C*-algebras with T'(C') # 0 and T(A) # (. Suppose that h :
C — A is a unital homomorphism. Define an affine continuous map hy : T(A) — T(C) by
hy(7)(c) = Toh(c) for all T € T(A) and ¢ € C. If A is simple and h is a monomorphism, then hy
maps T(A) into T;(C).

Definition 2.2. Let C' be a unital C*-algebra with T'(C) # 0. For each p € M, (C) define
p(17) = 7 ® Tr(p) for all T € T(A), where T'r is the standard trace on M,. This gives positive
homomorphism p¢c : Ko(C) — Aff(T(C)).

2.3. Let C be a unital C*-algebra. Denote by U(C') the unitary group of C' and denote by Uy(C')
the subgroup of U(C) consisting of unitaries which connected to 1¢ by a continuous path of
unitaries. Denote by CU(C') be the closure of the normal subgroup generated by commutators
of U(C). Let u € U(C). Then @ is the image of w in U(C)/CU(C). Denote by CUy(C) the
intersection CU(C) N Up(C).

Now suppose that T'(C) # (0. Let n > 1 be an integer. Let u € Uy(M,(C)). Let v €



C(]0,1], Up(M,(C))) which is piecewise smooth such that (1) = u and 7(0). Define

1
A0 @ = [ (o (¢22)

where 7 is identified with 7 ® Tr (note that, for n > 1, 7 in the above formula is not the
normalized trace). As in K. Thomsen (see [24]), the de la Harp-Scandalis determinant provides
a continuous homomorphism

A R (Uo (M (€)) /Up (M (C)) N CU (M (C)) — A(T(C))/pc (Ko(C)). (e2.3)

We will use CU (M (C)) for U2 ,CUy(My(C)).
Define a metric as follows. If u,v € U(M,(C)) such that uv* € Uy(M,(C)), define

dist(a, v) = ||A(uv®)||. (e2.4)
Note that if u,v € Uy(My(C)), then
dist(a,7) = [ A(u) — A(v)]

(where the norm is the quotient norm in Aff(7'(C))/pc(Ko(C))).
Note that if w € CU(C), then [u] = 0 in K;(C). Using de la Harp-Scandalis determinant, by
K. Thomsen (see [24]), one has the following short splitting exact sequence:

0 = AfH(T(C))/pc(Ko(C)) = U(Mx(C))/CU (M (C)) = Ki(C) — 0. (e2.5)

We will fix one splitting map Jo : K1(C) = U(My(C))/CU(My(C)). For each u € J(K1(C)),
select and fix one element u. € US2 M, (C) such that @ = u. Denote this set by U.(K;(C)).

If A is a unital C*-algebra and ¢ : C — A is a unital homomorphism, then ¢ induces a
continuous map

pt: U(Moo(C))/CU (M (C)) = U(Moo(A))/CU (Moo (A))

Denote by ¢f : K1(C) — Aff(T(A))/pa(Ko(A)) the map (id — Ja) ot o J., where J4 : K1 (A) —
U(Mux(A))/CU(My(A) is a fixed splitting map.
If K1(C)=U(C)/Uy(C), then, by [24],

Uo(C)/CU(C) = Up(Mn(C))/CU(My(C))
for all n > 1.

2.4. Let A be a unital C*-algebra and let u € Uy(A). Let v € C([0,1],U(A)) such that v(0) =1
and 7(1). Denote by Length({~}) the length of the path ~. Put

cel(u) = inf{Lengthy(u) : v € C([0,1],U(A)),v(0) =1 and ~(1) = u}.

Definition 2.5. Let C' be a C*-algebra and let P C K(C'). There exists 6 > 0 and a finite
subset G C C' such that, for any J-G-multiplicative contractive completely positive linear map
L:C — A (for any C*-algebra A), [L]|p is well defined (see 0.6 of [10] and 2.3 of [I7] ). Such
a triple (0,G,P) is called local K-triple (see [3]). If K;(C) is finitely generated (i = 0,1) and P
is large enough, then [L]|p defines an element in K K(C, A) (see 2.4 of [I7]). In such cases, we
will write [L] instead of [L]|p, and we will call (§,G,P) a K K-triple and (4,G) a K K-pair. Note
that, if u is a unitary then, we write (L(u)) = L(u)(L(u)*L(u))~"/? when ||L(u*)L(u) —1|| < 1



and ||L(u)L(u*) — 1|| < 1. In what follows we will always assume that ||L(u*)L(u) —1|| < 1 and
|L(u)L(u*) —1|| < 1, when we write (L(u)).

Suppose that C' is a separable C*-algebra and C is the closure of U2 ,C,, where each
Cy, = limy, 500 (Ch s cpsg)) and K;(Cy, ) is finitely generated (i = 0,1). Denote by ¢, : C;, = C
the embedding and 9053,)00 : Cym — Cy the homomorphism induced by the inductive system

(Cpomsom). We say that (0,G,P) is a K L-triple, [1,, o 90,(3,)00](73’) D P for some n, m and some
finite subset P’ C K(Cy, ) and if any 6-G-multiplicative contractive completely positive linear
map L : C — A (for any A), gives a 0-G’-multiplicative contractive completely positive linear

map Lozi,o gp%?oo so that (6,G",P’) is a K K-triple.

2.6. If A is a unital C*-algebra with tracial rank at most one, then we will write TR(A) < 1
(see [12]).

Definition 2.7. Let X be a compact metric space, let © € X and let r > 0. Denote by O(x,r)
the open ball with center at x and radius r. If = is not specified O(r) is an open ball of radius 7.

The following could be proved directly but also follows from 4.6 of [14].

Theorem 2.8. Let X be a compact metric space, let € > 0 and let F C C(X) be a finite subset.
There exists n > 0 satisfying the following: for any o > 0, there exists v > 0, § > 0, a finite
subset G C C(X) and a finite subset H C C(X)s.q and a finite subset P C K(C(X)) satisfying
the following:

For any unital 6-G-multiplicative contractive completely positive linear maps o, : C(X) —
M,, (for some integer n > 1) for which

[Pllp = WP, Hrop(Or) >0 (€2.6)
for all open balls O, of radius r > n and
|Top(a) —Toy(a)| <~y for all a € H, (e2.7)

there is a unitary u € My such that

llp(f) — Aduop(f)]| <€ for all f € F. (e2.8)

The following is an variation of Lemma 4.3 of [18].

Corollary 2.9. Let X be a compact metric space, € > 0 and F C C(X) be a finite subset. There
exists m > 0 satisfying the following: for any o1 > 0 and any 0 < X\ < 1, there exists no > 0
satisfying the following: for any oo > 0, there exists 6 > 0, a finite subset G C C(X) and a finite
subset P C K(C(X)) satisfying the following:

For any unital §-G-multiplicative contractive completely positive linear map ¢ : C(X) — M,
(for some integer n > 1) such that

[ellp = [H]lp (€2.9)
for some unital homomorphism H : C(X) — M, and such that
Nrogp(or) > o1 and Nrocp(or) > 09 (e 2'10)

for all open balls O, of radius r > n1 and r > 19, respectively, there is a unital homomorphism
h:C(X)— M, such that

llp(f) = h(f)|| <€ for all feF. (e2.11)



Moreover,
Ntroh(Or) > Aoy (e 212)
for all v > 2n;.

2.10. Let C be a unital C*-algebra and let P C K(C') be a finite subset. There is a finite subset
Fepp C C and a positive number dcp, > 0 such that Bott(u, h)|p (see the definition 2.10 of
[17]) is well defined for any unital C*-algebra A, any unital homomorphism h : C' — A and any
unitary v € A for which

ITA(f), u]ll < dopb- (€2.13)

Moreover, by choosing even smaller dcp p, if h1 : €' — A is another unital homomorphism and

1(f) = Pa(F)]l < dcp b,
then Bott(u, h1)|p is also well defined and
Bott(u, h)|p = Bott(u, hi)|p.
As in tradition,
botty (u, h)|p = Bott(u, h)|pnk, ) and botto(u, h)|p = Bott(uh)|pnr,c)-

If K;(C) (i =0,1) is finitely generated, then, by choosing P large enough, we may assume that,
when (e2.13) holds, Bott(h, u) is well defined. Furthermore, we will write dc 1, instead of ¢ p b
and Fcp, instead of Fopp.

If C=C(T), let z € U(C(T)) be the standard unitary generator, one writes that

botti(u, h) = bott(u, h(z)).
Suppose that there is a continuous path of unitaries u(t) : [0,1] — Up(A) such that
uw(0) =wu, u(l) =14 and [[R(f), u(t)]|| < dcpp for all t e [0,1], (e2.14)
then
Bott(u, h)|p = 0. (e2.15)

Now suppose that C is a unital separable amenable C*-algebra which is the closure of
U, Cy, where C), = limn_,oo(C’mm,gogf)) and K;(Cy, ) is finitely generated (i = 0,1). Let z
be the standard unitary generator of C'(T). We may view P as a subset of K(C ® C(T)). Let
Go be a finite subset of C. Define G = {g® f : g € Gy and f € S}, where S = {1, z,2*}. Let
P1 =P UB(P) (see 2.10 of [17] for the definition of 3). Let § > 0. Suppose that (§,G1,P1) is a
K L-triple for C @ C(T) (by selecting large Gy to begin with).

By choosing even smaller ¢ p ,, we may assume that, if there is a unitary u € A such that
(eZ13) holds, and if there is a unital 6-G;-multiplicative contractive completely positive linear
map L:C® C(T) — A such that

HL(f (9 1) — h(f)” < 50773710 for all f € ]:C’,P,b (e 2.16)
and [[u—L(1®2z2)| < dcpb, (e2.17)

then
Bott(u, h)|p = [L]|g(p)-



The following is a restatement of Theorem 7.4 of [17].

Theorem 2.11. Let X be a compact metric space. For any € > 0 and any finite subset F C
C(X), there exists n > 0 satisfying the following: For any o > 0, there exists 6 > 0, a finite
subset G C C(X) and a finite subset P C K(C(X)) satisfying the following: Suppose that
¢ : C(X) — M, is a unital homomorphism such that

Pirop(Or) > 0
for all open ball O, with radius r > n. If u € M, is a unitary such that
l[w, o(g)]ll <0 for all g € G and Bott(h, u)|p =0,
then there exists a continuous rectifiable path of unitaries {u; : t € [0,1]} of M,, such that
ug =1,ur =14 and [[[A(f), w]| <e
for all f € F and t € [0,1]. Moreover,

Length({u;}) < 2w + em.

3  Almost multiplicative maps from C(X) into interval algebras

Lemma 3.1. Let X be a compact metric space, let G C K1(C(X)) be a finitely generated
subgroup generated by {s1, 52, ..., Sp(x)}- For any € > 0, any finite subset F C C(X) and any
finite subset P C K(C(X)), there exists n > 0 satisfying the following: For any 1 > o > 0, there
exists d > 0, for any o : KK(C(X) ® C(T),C) = Homa(K(C(X) ® C(T), K(C)) and for any
unital homomorphism ¢ : C(X) — M, for some integer n > 1 for which

Prop(Or) > 0 (e3.18)
for any open balls O, with radius r > 7, where tr is the normalized trace on M,, and
max{|a(g)|: 1 <i<m(X)}/n <d, (€3.19)
there exists a unitary u € M, such that
Ile(f), ull| <€ for all f € F and Bott(p, u)|p = a|p. (€3.20)

Proof. Let ¢ > 0 and F C C(X) be a finite subset. Let e¢; = min{e/2,5c(x)pp} and let
Fi=FU ]:C(X)7'p7b.

Let n > 0 be given by [Z8] associated with €¢/16 (in place of €¢) and F. Let o > 0. Let v > 0,
0>0,G,PC K(C(X))and H C C(X) be given by 2.8 associated with the above ¢/16 (in place
of €), m > 0 (in place of n) and ¢ /2. For convenience, we may assume that HUF C G. We may
assume that § < min{e/2,1/4}, [|g|| <1if g € G and 1¢(x) € G.

Let Gi ={9g®f:9€G and f=1,z2*} C C(X)®C(T), where z is the identity function on
the unit circle. We may also assume that (6,G1,P;) is a K L-triple for C'(X) ® C(T). Moreover,
we may assume that § < d¢(x)pp and G D Fo(x) b

Suppose that C(X) = lim, . C(Y},), where each Y,, is a finite CW complex. Let 1,, :
C(Y,,) — C(X) be the unital homomorphism induced by the inductive limit system. We may
assume that there is a finite subset G’ C C(Y},) and there is a finite subset P’ C K(C(Yy,))
such that 2,,,(G") D G and [1,,,](P’) D P. We may also assume that there are s}, s, ...,S;n(X) €



K1 (C(Ym)) such that (1,)s1(s}) = s5, j = 1,2,..,m(X). Let G} = {g@ f : g € §" and f =
1,2, 2*}. We may further assume that (4,G’) is a KK -pair for C(Y,,) @ C(T).

Suppose that Y;, is the disjoint union of finitely many connected CW complexes Z1, 2o, ..., Z;.
Without loss of generality, we may assume that there is, for each i, a finite subset G  C (Zi)
such that @!_,G® = G’ and there is a finite subset P/ C K(C(Z;)) such that ®'_, P/ = P’
Choose §; € Z; such that §; €Y, i =1,2,...,1.

Let N(5/4,Q§Z),77£) be given by Lemma 10.2 of [I8] for C(T x Z;). Define

l
N(6/4,G1,P) =Y N(6/4,G{" 7).
i=1

Let
1

Let « be as in the statement and let
k= max{|a(s;)] :i=1,2,....,m(X)}.

Note that, if = € kerpcyy,,), then hi(z) = 0. Let Y be the compact subset of Y, such that
1t (C(Ym)) = C(Y). Denote by ¢ : C(Y) — C(X) the embedding given by ¢,,. Let s : X — Y
be the surjective map such that +(f)(z) = f(s(z)) for all f € C(Y},) and =z € X.

Choose 8 € Hom (K (C(Yy,) @ C(T)), K(C)) defined as

Blr(cv)) = [H] (e3.21)

for some point-evaluation (at &1,&s,...,&) H : C(Y,,) = Mg (for some integer K > 1) and

Bla(c(vm)) = @0 [tm]laE ©(¥m)) (3.22)

(see 2.10 of [17] for the definition of 3). Let Gy = {g®1: g€ G}U{z1} C C(Y,n) @ C(T), where
z1 = 1® z and z is the identity function on the unit circle. Let L = kN (4, G}, P’).

It follows from Lemmas 10.2 of [18] that there exists a unital 6 /4-G]-multiplicative contractive
completely positive linear map @ : C(Y,,) ® C(T) — M|, such that

[®]|k(co(2)) = Blr(co(2)) (e3.23)

where Z = Y x T\ Ul_,{& x loemy} and where 1 is the point in the unit circle. Define ¢y :
C(X) — Mg by ¢u(f) = ®(f @ 1¢(m) for all f € C(X). Define

uo = L(lex) ® 2)(L(1ex) ® 2°)Lloi) ® 2))'? = (L(lex) ® 2)).

Then
[uo — L(1ox) @ 2)|| < dc(x).p.b-

Now suppose that ¢ : C'(X) — M, for some integer n > 1 for which
,utroap(Or) >0 (e 324)
for all open balls O, with radius r» > 7, where tr is the normalized tracial state on M,, and

k/n < d.



Note that n > L. We may write that
p(f) =" f(&)pi for all feC(X), (€3.25)
i=1

where {p1,p2,...,pn} is a set of mutually orthogonal rank one projections and & € X, i =
1,2,...,n. Define ¢’ : C(X) — M, _, defined by

n—L

¢ (f) = f(&)pi for all feC(X). (€3.26)

1=1

Define ¢1 : C(X) — M, by
e1(f) = ¢'(f) ® po(f) for all fe C(X). (e3.27)
Since k/n < d < y(k/L), L/n < . Therefore one computes that
[T o@(g) —Topi(f)] <~ for all g € H. (e3.28)
Moreover, since k/n < d < (0/2)k/L, L/n < o/2. Therefore, by (e3.24)),
Ptrop, (Or) > 0/2

for all r > n.
It follows from 2.8 (also using (e3.21])) that there is a unitary w € M,, such that

|[Adw o pi(f) —e(f)| < €/2 for all fe F. (€3.29)
Put
n—L
—N—
u=w"(diag(1, 1, ..., 1, up))w. (€3.30)

One check that this unitary u meets all the requirements.

The following is a folklore.

Lemma 3.2. Let X be a compact metric space, let n; > 0 and o; > 0 (i = 1,2,...,m) with
N >M > >Ny and g1 > 09 > -+ > Oy, and let 0 < A, Ao < 1. There exists § > 0 and a
finite subset G C C(X) satisfying the following:

Suppose that A is a unital C*-algebra with T(A) # (0 and suppose that p,9 : C(X) — A are
two unital positive linear maps such that

o (O1) = 0 (e3.31)
forallr >mn;, j=1,2,...,m, and
[Top(g) —Tov(g)| <6 for all g€G. (3.32)

Then,
Proyy(Or) > Aioj

for all > 2(14+ Xo)n;, j =1,2,...,m.



Proof. To simplify the proof, without loss of generality, we will prove only for the case that
m = 1. The general case follows by taking minimum of m §’s and the union of m G’s.
There are x1, 9, ...,zx € X such that

Uf:(:lO(xlﬁ 7]) D X.

There are f1, fo,..., fxk € C(X) with 0 < fr < 1 such that fy(x) = 1 if z € O(zg,n) and
fr(x) = 0 if dist(x, zr) > (1 + A2)n. Choose 6 = (1 — A\)oy and G = {f1, f2, ..., fK }-

Now suppose that ¢,1 : C(X) — A are two unital positive linear maps which satisfy the
assumption (e3.31)) and (e3.32]).

Let © € X and consider O(z,r) for some r > 2(1 + A2)n. Then there exists xj such that
dist(x, zx) < n. This implies that

O(zk, (1 4+ A2)n) C O(x, 7).

Thus
firop(O(z,7)) > Tot(fi) > Tow(fr) — (1= A1)or (€3.33)
> firop(O(zk,m)) — (1= A1)or (e3.34)
> Ao (e3.35)
for all 7 € T'(A).
O

Remark 3.3. Note that in the above lemma, we insist that § and G do not depend on ¢.
Otherwise one can have better estimates.

Lemma 3.4. Let X be a compact metric space, let A : (0,1) — (0,1) be a nondecreasing
function, let n > 0 and let 0 < A1, Ao < 1. There exists 6 > 0 and a finite subset G C C(X)
satisfying the following:

Suppose that A is a unital C*-algebra with T(A) # (0 and suppose that p, : C(X) — A are
two unital positive linear maps such that

Prop(Or) > A(r) (e3.36)
for allr > n and

|To@(g) —To(g)] <o for all g €g. (e3.37)

Then,
,UfTow(Or) > AlA(T/2(1 + )‘2))

for all r > 2(1 + Xo)n.

Proof. Let n > 0, A and 0 < Ay, A2 < 1 be given. Choose Ag > 0 such that 0 < Ay < Ag. Let
1>ry>re>--->ry > 0such that n > ry and

1+ Xo

. S , —
TH-I/TZ 1+ A 1

Put n; =r; and 0; = A(n;), 7 =1,2,..., N — L.
Let § > 0 and G be required by B.2 for n; and 0; (j = 1,2,..., N),A\; and As.
Now suppose that ¢, 1 satisfy (e3.30) and (e3.37). By applying B:2] we conclude that

Hroqp (Or) > )\laj
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for all 7 € T(A) and all r > 2(1 + Xo)n;, j = 1,2,..., N.
Now suppose that 7 > 2(1 4+ \2)n > 2(1 + Ao)n. Then

r

— Y > 1)
201+ ro)
We may assume that, for some 7,
=1 ag)
Then
frop(Or) > A10j11 = AMAM;11) (e3.38)
14+ X
> MAM(———— .
> MAm (D) (¢3.39)
r
> MA(——— A
> N (2(1+)\2)) (e3.40)
for all 7 € T'(A).
O

Lemma 3.5. Let u € CU(M,(C([0,1])) be a unitary such that
lu(0)u(t)* —1|| <1 for all t €0,1]. (€3.41)
Suppose that u(0)u(1)* = exp(v/—1h) with ||h|| < 2arcsin(1/2). Then
Tr(h) = 0.
Proof. Write u = exp(v/—1a), where a € M,,(C([0,1]) is a selfadjoint element. It follows that

(%)Tr(a(t)) cZ.

Therefore Tr(a(t)) is a constant. There exists a selfadjoint element b € M, (C([0, 1]) such that
u(0)u(t)" = exp(v/—1b(t)) and ||b|| < 2arcsin(1/2).

However, u(0)u(t)* € CU(M,(C([0,1])). Thus, from what have been proved above, (5=)Tr(b(t))
is a constant. Since b(0) = 0,
(%)Tr(b(t)) =0 for all ¢t € [0,1].
T
Note that h = b(1). Therefore
Tr(h) = 0.

0

Theorem 3.6. Let X be a compact metric space, let F C C(X) be a finite subset and let
€ > 0 be a positive number. There exists n1 > 0 satisfying the following: for any o1 > 0,
there exists mo > 0 satisfying the following: for any oo > 0, there exists n3 > 0 satisfying the
following: for any o3 > 0, there exists ng > 0 satisfying the following: For any o4 > 0, there
exists 71 > 0, v2 > 0, § > 0, a finite subset G C C(X) and a finite subset P C K(C(X)) a
finite subset H C C(X) and a finite subset U C U.(K1(C(X))) for which [U] C P satisfying
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the following: For any two unital 6-G-multiplicative contractive completely positive linear maps
o, : C(X) = M,(C(]0,1]) such that

[Pllp = [¥llp = [Allp (e3.42)
for some unital homomorphism h : C(X) — M,(C([0,1])),
fres(00) = iy pro(O1) = (e3.43)
for all 7 € T(M,(C([0,1]))) and for all r > n;, i =1,2,3,

|Top(g) —Tow(g) <1 for all g € H and (e3.44)
dist({p(u)), (Y(u))) < y2 for all u €U, (e3.45)

there exists a unitary W € M, (C([0,1])) such that

IWo(f YW —o(f)|| <€ for all f e F. (e3.46)

(Note, as stated in 2Z1], ¢ and ¢ in (e3.44) is in fact ¢ ®idps, and ¢ ®@id,,, for some integer
k > 1. This will be used in the proof below.)

Proof. Put B = M, (C(]0,1]).

We may write C'(X) = limy, 00 (C(Yy), %), where Y, is a finite CW complex. Let € > 0 and a
finite subset F C C(X) be given. Without loss of generality, we may assume that F C ,(C(Y},))
for some n. Let 1] > 0 (in place of ) be required by [ZI1] for €/32 (in place of €) and F.

Let m =1} /3. Let 01 > 0 and let 0] = 01/2 > 0. Let §; > 0 (in place of €), G; C C(X) (in
place of G) be a finite subset and let Py C K(C(X)) (in place of P) be a finite subset required
by 2171 for €/32 (in place of €), F, ] and o}. We may assume that d; < €/32.

There exists a finite CW complex Y, a unital homomorphism 2 : C(Y) — C(X) and a finite
subset 7' C C(Y) such that «(F') = F and [1J(K(C(Y))) D Py (by choosing Y =Y,, for some
large n).

Let 0 < d2 < do(vyb and Gy D Fegyyp such that (d2,G5) forms a K K-pair for C(Y).
Let Py C K(C(Y)) be such that éc(yvyp = dopypb- To simplify the notation, without loss of
generality, we may assume that [¢](P}) = Po. Put Go = 1(G).

Denote by z € C(T) the identity function on the unit circle. We may also assume that, for any
d2-{z,1} x Go-multiplicative contractive completely positive linear map A : C(T)® C(Y) — C
(for any unital C*-algebra C with T'(C') # 0), [A] is well defined and

7([A(g)]) =0

for all g € Tor(K1(C(Y))) (which is a finite subgroup).
Furthermore, we may assume that d2 is so small that if |juv — vu|| < 3d2, then the Exel
formula

1
2my/—1
holds in any unital C*-algebra C with tracial rank zero and any 7 € T(C') (see Theorem 3.6 of
[16]). Moreover if ||v; — va|| < 3d2, then

T(botty (u,v)) =

(t(log(u*vuv®))

botty (u, v1) = botty (u, va).

Let U = {g1, 92, -, gx(x)} C Ue(K1(C(X)) be a finite subset such that {[g1], [g2], -, [gx(x)]}
forms a set of generators for the finitely generated subgroup generated by Py N K1 (C(X)). We
assume that m(X) > 1 is an integer and g; € U(M,,(x)(C(X)). We may further assume that

12



there are g (j = 1,2,...,k(X)) in U.(K1(C(Y))) such that +(g;) = ¢}, j = 1,2,..., k(X) (here
again we identify a set of unitaries with its image in U(C(Y'))/CU(C(Y)))). Furthermore, we
may assume that ¢}, g, ..., 92(){) generate K1(C(Y)). Let Uy C C(X) be a finite subset such that

U= {(am) 1045 € UO}.

Let &, = min{1/256m(X)2, 0, /16m(X)?,2/16m(X)?} and G, = F UG UGy Uly.

Let 75, > 0 (in place of n) required by Bl for d,, (in place of €) and G, (in place of F). Put
n2 = n5/3.

Let 09 > 0 and let 0, = 09/2. Let 1 > d > 0 be required by Bl for min{4; /4,d2/4} (in place
€), G, (in place of F), n2 and o.

Let 63 > 0 (in place of ¢) and let G3 € C(T) ® C(X) (in place of G) required by Lemma 10.3
of [18] for d/8 (in place of o) and T x X (in place of X). Without loss of generality, we may
assume that

Gs={2®g:9€G}U{l®g:g¢cl},

where G C C(X) is a finite subset (by choosing a smaller §3 and large G3).

Let €] > 0 (in place of §) and let G/ C C(X) (in place of G) be a finite subset required by
B2 for n1,m2, 01,02, 1/2 (in place of A1) and 1/4 (in place of Ag).

Let ¢/ = min{d/27m(X)?,8,/2,03/2m(X)?, €| /2m(X)?} and let & > 0 (in place of §) and
Gs C C(X) (in place of F1) be a finite subset required by 2.8 of [I7] for €] (in place of €) and
G, UG, UGY (and C(X) in place of B). Put

€1 = min{e|, €, & }.

Let 05 > 0 (in place of ) be required by 28] for €; /4 (in place €) and G5 (in place of F).

Let n5 > 0 (in place of n1) be required by 2.9l for ¢; /4 (in place of €) and G5 (in place of F).
Let n3 = min{n},n4 }. Let o3 > 0. Let 71 > 0 (in place of ), d4 > 0, Gg C C(X) (in place of G),
H C C(X) be a finite subset and let P; C K(C(X)) (in place of P) be required by 2.8 for €; /4
(in place of €), G5 (in place of F), n3 (in place n) and o3 (in place o). Let ns > 0 (in place of 72)
be required by 2.9] for €; /4 (in place of €), G5 (in place of F), n3 (in place of 71), o3 (in place of
01). Let o4 > 0. Let d5 > 0, Gz C C(X) (in place of G),P, C K(C(X)) (in place of P) required
by

Let 6 = min{e1/4,04,05}, G = GsUGs UGr UH and P = Py U Py U Pa Let 12 <
min{d/16m(X)?2, 6, /9m(X)?,1/256m(X)?}. We may assume that (§,G,P) is a K L-triple.

Now suppose that ¢,9 : C(X) — B for some integer n are two unital -G multiplicative
contractive completely positive linear maps which satisfies the assumption for the above 1;, J;
(i1=1,2,3,4), v (i=1,2), P, U and H.

Choose a partition

O=tog<ti <---ty=1

such that

17 0 p(9) — 1,y 0 p(9)|| < e1/4 and [[m; 09p(g) — 7, 0 p(9)]| < e1/4 (e3.47)

for all g € G and for all t € [t;_1,t;], i = 1,2,..., N. By applying 2.8 for each i, there exists a
unitary w; € M, such that

lwime, o p(g)w; — 7, o P(g)|| < €1/4 for all g € G (e3.48)
and, by 2.9] there are unital homomorphisms h; 1, h; 2 : C(X) — M, such that

172 0 (9) = hin(9)ll < er/4 and |[m; 0 9(g) — hiz(g)l| < e1/4 for all g € Gs,  (e3.49)
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i=0,1,2,...,N. Moreover (by also applying [3.2)),
Htroh; ; (Or) > U;g (e 350)

forall 7 >m,, k=1,2,j=1,2and i = 1,2,...., N. Let w; € M,,(x)(B) be a unitary such that
wj € CU(Mm(X)(B) and
Write
w; = exp(v—1a;)
for some selfadjoint element a; € M, x)(M,(C([0,1]))), j = 1,2,...,k(X). Then
n(t @ Trmxy)(a;(s))
2m

(s € [0,1]), where t is the normalized trace on M,. It follows that the above is a constant. In
particular,

€7

n(t @ Tr(x))(a;(ti) = n(t @ Trm(x))(a;(ti-1)), (e3.52)

i=1,2,...,Nand j=1,2,....m(X).
Let W, = w; ® ide(X), 1=20,1,....,N. Then

(i © idag )85 Walhss © idag, )} (9 Wi — (8] < 3m(X)2er + 292 < 1/32 (€3.53)
It follows from (e3.51]) that there exists selfadjoint elements b; ; € M,,,(x) such that

exp(V'—1b; ;) = w;(t:)* (hiy @ idar,, ) (g5)Wilhig @ idag, ) ) (9;) Wi (e3.54)
such that

16 ;]| < 2arcsin(3m(X)%e1/4 +2v2), j=1,2,...,m(X), i=0,1,..,N. (e3.55)
Note that

(hig @ 1da,, ) (9)Wilhia @ ida,, ) (95) Wi = wj(t;) exp(vV—1b; 5), (€3.56)
j=12,..,m(X)andi=0,1,...,N.

Then,

n . .
%(t ® Tru,,x)(bij) €Z,, j=1,2,....,m(X),i=0,1,..,N. (e3.57)

Let n

Nijg = 5 (@ Tra, ) (big)
j=0,1,2,. ( ), i =1,2,...,N. Note that \; ; € Z.

Deﬁnea ol K(C(Y))—>Zby mapping ¢} to Aij, j = 1,2,...,m(X) and i =0, 1,2, ..., N.
We write K(]( ( )R C(Y)) = Ko(C(Y)) @ ,B(Kl( (Y))) (see 2. 10 of [17] for the definition of
B). Define «; : K. (C(T) ® C(Y)) — K.(M,) as follows

@il ko (c(mec vy ([1]) = n, (e3.58)
ozi|kerpc(y) =0, (e3.59)
0,1
O‘i|,8(K1(C(Y))) =Q; 0 5|K1(C(Y)) = 042( ), (e3.60)
@il i, (c(mywey)) =0, (€3.61)
(e3.62)
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By the Universal Coefficient Theorem ([23]), there exists an element o; € KK (C(T)® C(Y),C)
such that o;|k, (c(T)ec(v) = @i as defined above, i = 1,2,..., N. We estimate that
[(wiywi)hi—1,1(9) = hi11(9)(wi_ywi)|| < er for all g € Gs.

Let A; : C(T) ® C(X) — M, be a unital contractive completely positive linear map given by
the pair w} jw; and hi—11, i = 1,2,..., N (see 2.8 of [I7]). Denote V;; = h;1 ® 1dMn(X)(gJ)
j=12,..,m(X) and i =0,1,2,..., N. Note that

HWi_lvi*_LjW Vi 1]v* WV W* ~ 1] < 1/16 (e3.64)

11—

and there is a continuous path Z(t) of unitaries such that Z(0) = V;_1; and Z(1) = V; ;. We
obtain a continuous path

Wi Vi Wi\ Vi1 Z() Wi Z ()W
which is in CU (M, (x)) for all t € [0, 1]. It follows that
(1/2nV=1)(t @ Tru,, x, ) [log(Wim1 Viy ;Wi Vie1 ; Z(6) Wi Z () W7)]

is a constant. In particular,

(1/271\/—_1)(t®TTMm(X))log(Wi_lV* W WiV ;W) (€3.65)
:(1/277\/—_1)(15@)T?"Mm(x))log(WZ Vi Wi Vie jVi5 WiV W), (e 3.66)
Also
Wi Vi Wi Vi Vi WiV, W (€3.67)
= (wj(ti- 1)6XP(\/_bz' 17)) wj(t:) exp(V—1bi ;) (e3.68)
= exp(—V/~1bi_1,j)wj(ti—1)"wj(t:) exp(v/~1bi;). (e3.69)
Note that, by (€3.51]) and (e3.53)),
llw;i(tiz1)*w;(ts) — 1] < 3(3€] + 279) < 3/32, (3.70)
j=1,2,....m(X),i=12 ., N ByB3
(t @ Tryn(x)) (log(w;(ti-1) w;(t:))) = 0 (€3.71)
It follows that (by the Exel formula, using (e3.66]), (e3.69) and (e3.71))
(t @ Trp(xy) (bott(Vio1 5, W2, W)) (e3.72)
_ (%\1/__1)(15@% o) Qog (Vi y Wi WiViey ;Wi Wiiy)) (e3.73)
_ (#j)(t@;wm(x))(log(wi_lw Wi WiVie ;W) (e3.74)
_ (27T\1/__1)(t®Trm(X))(log(Wi_1Vi* Wi Vi Vi WiV W) (3.75)
= (#_—1)@®TTm(X))(lOg(eXp(_\/__lbi—Lj)wj(ti—l)*wj(ti)eXp(\/__lbij)) (e3.76)
= (#_—1)[(755977% D=V =1bi—15) + (t @ Trygy) (log(wj(ti-1)*wi(t:))  (3.77)
+(t @ Ty ) (V—1b; 5)] (e3.78)
= 217T[(t ® Try(ny) (—bim1,5 + bij)- (e3.79)
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In other words,
bOtt(Vi_Lj, VVZ*_1WZ)) = —)\i—l,j + )\i,j (e 3.80)

j=12,..,m(X)andi=1,2,...,N.
Define 8y =0, f1 = [A1] — ap + a1 and

Bi = [Az] -1+, 1=1,2,...,N. (e 381)

Define kg = 0 and k; = o; + i, i = 1,2, ..., N. Note that oy, 5;,k; € KK(C(T) ® C(Y)),C) We
compute that

Bilg;) = [Ml(g)) — Aoy + Aj = 2(A15 — Aoyg), (e3.82)
Balgy) = [A2l(g)) — Mg — Az + Bilg)) (e3.83)
= 2(Ag; — Ao,;) and (e3.84)
Bilgy) = 2(\ij —Xoy), i=1,2,..,N and j=1,2,...,k(X). (3.85)
It follows that
7 & Trmoey ()| = A /nl + 20| < d/2, (e 3.56)

j=12,...N and i=1,2,....k(X). By applying Bl there is, for each i = 1,2,..., N, a unitary
z; € M, such that

[zi, hi1(9)]l| < 0y for all g € G, (e3.87)
and Bott(z;,h;101) =k, 1=0,1,2,..,N — 1. (e3.88)

Let U; = ziqw;_jw;z7, i =1,2,...,N. Then
|[Us, hi—1,1(9)]]] < min{dy,d2} for all g € Gy, (3.89)

i =1,2,..., N. Moreover

Bott(Uj, hi—1101) = Bott(z;1, hi—1,1 ©1) + Bott(w;_ w;, hi—1,1 01) (e3.90)
+Bott(2;, hi—1,101) (e3.91)

= Ki—1+ [A] — ki (€3.92)

= i1+ Pic1+H[N] - — B (€3.93)

= i1+ Pi-1 +[N] — i — ([Aj] — i1 + i + Bi1)  (e3.94)

= 0 (€3.95)

1=0,1,2,...,N — 1. It follows that
BOtt(UZ‘, hi_1,1)|7> = 0, 1= 1, 2, ceey N —1.
By applying [2.11] there exists a continuous path of unitaries, {U;(¢t) : t € [t;—1,t;]} such that

Ui(ti—1) =1, Ui(ti) = zi—1w;_jw;z; and (€3.96)
U1 (DU — b1 (F)] < /32 (e3.97)

for all f € F and for all ¢ € [t;_1,t;], i = 1,2,..., N. Define W € B by

W(t) = wi_lzf_lUi(t) for all t € [ti_l,ti], i1=1,2,...,N.
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Note that W (t;—1) = wi—12}_;,i=1,2,...,N, and W(1) = wnz},. One checks that, by (e3.49]),
(e3.96)), (e3.87), for t € [ti—1,t],

W () 0 p(fIW ()" =m0 yp(f)]| (€3.98)

< Wm0 (/YW (8)" = W (t)me,_, o (/)W (£)7]| (€3.99)

HW(E)ms_y 0 p(SIW(E)" = W ()hi—1,1 (S)W (£)"]| (€3.100)

HIW(@hi—1 (/Y)W ()" = W (tim)himr 1 (/)W (i) (e3.101)

H W (tim) hic 1 ()W (1) — wimahi—11 (f)wi_y || (€3.102)

Hllwi-rhi—1 (f)wiy — wicam,_, o e(f)wi || (e3.103)

Hlwi—1me,_, o @(flwi_y — e, o w(f)]| (€3.104)

Flime,_y 0 () =m0 p(f)]] (e3.105)

< efi+e/d+e/32+0,+e/d+e/i+ea/d<e (e3.106)
for all f € F.

[l

Remark 3.7. By an argument used in[5.]] we can remove the part of the assumption in (e3.42])
that [p]|p is the same as [h]|p for some homomorphism. At present, we do not use that form of
the statement.

4 Preparation for the proof

Lemma 4.1. There is an integer K > 0 satisfying the following condition: Suppose that u €
M, (C([0,1]) for some integer n > K. Then, for any integer k > 0 and any L > 0, if cel(u*) < L,
then cel(u) < 2n/K + L/k + 6.

Proof. (See the proof of 6.10 of [15].) It follows from Lemma 3.3 (1) of [22] that there exists a
selfadjoint element a € M, (C([0,1])) with |ja|]| < L such that

det(exp(ia)u®)(t) = 1
for every t € [0, 1], provided that n > K for some integer K > 1. Fix one of such integer n. So
det((exp(ia/k)u)¥)(t) = 1
for all t € [0, 1]. This implies that, for each ¢ € [0, 1],
det(exp(ia(t)/k)u(t)) = exp(2mil(t)/k) (e4.107)

for some integer [(t) < k Suppose that b(t) = —2xl(t)/k. Then b(t) is a real valued continuous
function on [0, 1], whence it is a constant. Note that

exp(i(b(t)/n) exp(ia/k) = exp(i(b(t)/n + a/k)).
Then
det(exp(i(b(t)/n) exp(ia/k)u) =1 (e4.108)
(for all t € [0,1]). By 3.4 and 3.1 of [22],

cel(u) <2n/K + L/k + 67. (e4.109)
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Theorem 4.2. Let X be a compact metric space. Let e > 0 and let F C C(X) be a finite subset.
Suppose that X : U.(K1(C(X))) — Ry is a map. There exist § > 0, a finite subset G C C(X), a
finite subset P C K(C(X)), a finite subset of unitaries U C U.(K1(C(X))) and an integer L > 0
satisfying the following condition: if p,v : C(X) — C([0,1], M,,) (for some integer n > 1) are
two unital 6-G-multiplicative contractive completely positive linear maps such that

[ellp = [¥llp and dist({p(u)), (¥ (u))) < A(u) (e4.110)

for all w € U, then there is a homomorphism ® : C(X) — Mp(M,(C([0,1]))) with finite
dimensional range and a unitary U € Mp11(M,(C([0,1], M,))) such that

[U*diag((f), ®(f)U — diag(y(f), (f))I| <€ (e4.111)

for all f € F.

Proof. This follows from Theorem 3.2 of [7]. One takes B = M, (C([0,1])). Note that B has
stable rank one and Ky-divisible rank T, where T : N x N is defined by T'(k,m) = [m/k] + 1.
Let K be the constant described in Lemma 3.4 of [22] (for d = 1). Pick a point £ € X. If
n > K, we continue the argument below. If n < K, define ¢y : C(X) — Mg_,(C([0,1]) by
wo(f) = f(&)idpm,_, for all f € C(X). Replacing ¢ and 9 by ¢ & ¢ and ¢ & ¢o and late
absorbing g, we see that we may assume that n > K.

Then, by Il B has exponential divisible rank E(L, k), where E(l,k) < 2r/K + L/k + 6.
It is also easy to see that cer(B) < 2. Then define A : U(Mx(C(X)) — Ry as follows:

Let IT : U(Mx(C(X))) — Ki(C(X)) be the quotient map and let J : K;(C(X)) —
U U(M,(C(X)))/CU(C(X)) be the splitting map (see2.3)). If v € U(M,,(C(X))) and II(v) #
0, define vy = v(J oII(v*))., where JoIl(v*), € U.(K1(C(X))). Define A : U(M(C(X))) — Ry
as follows:

A(v) = 2cel(v) +1 if ve U Uy(M,(C(X))) and (e4.112)
A(w) = MJoIl(v).) + 67 + 2cel(vg) + 1 if II(v) # 0, (e4.113)
where cel(v) and cel(vg) is the exponential length of v and vy in U2 Up(M,,(C(X))).

Note that, for any finite subset V C U(M,,(C(X))) (for some integer m > 1), if § is suffi-
ciently small and G is sufficiently large (depends only on V),

cel(p(v)(v)*) < 2cel(v) +1/4 < A(v) for all v €V and II(v) = 0. (e4.114)

Otherwise, if II(v) # 0, v = v.vg for some v, € U (K1(C(X))) and vy € Up(Moo(C(X))). Thus,
if v. € U, § is sufficiently small and G is sufficiently large (depends only on V and i),

cel(p(v)y(v™)) = cel(p(vevo)y(vgoe)) (e4.115)
< cel(p(v)ip(v)”) + 1/4 + cel(p(ve) ¥ (v;) (e4.116)
< 2cel(v) +1/4 +1/4 + Ave) + 67 < A(v). (e4.117)

Therefore we can apply Theorem 3.2 of [7] directly (and the point-evaluation f +— f(£)idas,
will be absorbed into ®).
O

The following is a folklore. It is a special case of Theorem 3.2 of [7]. It also follows from 2.9
We state here for the convenience for our proofs.
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Lemma 4.3. Let X be a compact metric space, let € > 0 and let F C C(X) be a finite subset.
There exists 6 > 0, a finite subset G C C(X) and a finite subset P C K(C(X)) which forms
a K L-triple for C(X) and an integer N satisfying the following: Suppose that ¢ : C(X) — F
1s a unital 6-G-multiplicative contractive completely positive linear map, where F is a finite
dimensional C*-algebra such that

[ellp = [Hlp

for some unital homomorphism H : C(X) — M,. Then there exists a unital homomorphism
®:C(X)— My(F) and a unital homomorphism h : C(X) — Myy1(F) such that

lo(f) & @(f) = h(f)Il <e
for all f € F.

Lemma 4.4. Let X be a compact metric space. Let X : U5 U (M, (C(X))) — Ry be a map.
For any € > 0 and any finite subset F C C(X), there exist 6 > 0 a finite subset G C C(X),
a finite subset P C K(C(X)) and a finite subset of unitaries U C U.(C(X)), a finite subset
{z1,29,....; ¢y} C X and an integer L > 0 satisfying the following condition: if p, ¢ : C(X) — A
(for any unital separable simple C*-algebra A with tracial rank at most one) are unital §-G-
multiplicative contractive completely positive linear maps such that

[llp = [¢llp and (e4.118)
dist({(w)), (¥ (u))) < A(u) (e4.119)

for all w € U, then, for any set of mutually orthogonal projections p1,p2, ..., pm € My (A) with
[pi] > L[14], i =1,2,...,m, there is a unitary U € Mr+1(A) such that

|U*diag(o(f), H(f)U — diag(s(f), H(f))|| < e (e4.120)

for all f € F, where H(f) =>"1", f(&)p;i for all f € C(X).

Proof. The proof follows exactly the same way as that of Note that it follows from [19] that
M;(A) has exponential rank 1 + € for every integer j > 1. Also, by [15], A has stable rank one,
K-divisible rank one, exponential divisible rank E(L,k) = L/k + 87 + 1 (see 6.10 of [15], or
derive it from (] directly). Thus Theorem 3.2 of [7] can also be applied as in the proof of

O

Lemma 4.5. Let X be a compact metric space and let s1, s2, ..., Sm € kerpg(x) be a finite subset.
For any d > 0, there is 6 > 0 and G C C(X) satisfying the following: For any unital C*-algebra

A with T(A) # 0 and any unital §-G-multiplicative contractive completely positive linear map
L:C(X)— A, one has that

7([L](s5)) < d for all T € T(A), j=1,2,....,m. (e4.121)
Proof. There is an integer mo > 1 and projections p;, ¢; € Mp,,(C(X)) such that
pi] — [gi] = si, 1=1,2,...,m.
Note that, for any 7 € T(A),
T(pi) =7(q;), i=1,2,...,m.

Now suppose the lemma is false. Then there is dy > 0, a sequence of unital C*-algebras
A, with T(A,,) # 0, a sequence of §,-G,-multiplicative contractive completely positive linear
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maps L, : C(X) — A, with > >° 0, < oo and U2 ,G, is dense in C(X) such that, for some
Tn € T(Ay) and 1 < j < m such that

|70 (L, @ idar,, ) (p; — ¢;))| > do (€4.122)

for all n. Define L : C(X) — [[72, An by L(f) = {Ln(f)} forall f € C(X). Let w: [[72, A, —
12, An/ @22, A, be the quotient map. Then wo L : C(X) — [[2; An/ &322, A, is a unital
homomorphism. Therefore, for any tracial state t € T([[72; An/ B2, Ay),

t(mol)® ideO)(pj — Qj)) =0. (e4.123)

Let T,, : [[721 An — C be defined by T,,(a) = 7,(m,(a)) for all a € [[72, A,, where m, :
I1,2, A, — A, is the projection to the n-coordinate. Then T;, is a tracial state. Note that, for
any a € ®72 Ay,

li_)m T, (a) = 0. (e4.124)

Let T be a limit point of {7}, }. Then, by (e4.124)), T defines a tracial state on [ ]2 | A, /@22, Ay.

Therefore, by (e4.123),
T(((m o Lxo) ® idas,,, ) (pj — ¢j) = 0.

It then follows that, for some subsequence {ny},
Jim 7, (L @ idat,,, (9j — 45)) = 0-

This contradicts with (e4.122). The lemma follows.
O

When K;(C(X)) (i = 0,1) is finitely generated, the following follows from 10.2 of [18].
We made a modification so it also applies to the case that K;(C(X)) (: = 0,1) is not finitely
generated.

Lemma 4.6. Let X be a compact metric space. For any § > 0, any finite subset G C C(X)
and any finite subset P C K(C(X)) for which the intersection of kerpc(x) and the subgroup
generated by P is generated by gi,92,...,gr such that (6,G,P) is a K L-triple, there exists an
integer N(8,G,P) satisfies the following:

For any unital 0-G-multiplicative contractive completely positive linear map L : C(X) —
B, where B = M,, or B = M,(C([0,1]) (for any integer n > 1) with K = max{|L(g;)| :
i = 1,2,....,k}, There exists an integer N(K) > 1 satisfying the following: for any integer
N > N(K)/n, there exists a unital 0-G-multiplicative contractive completely positive linear map
Ly: C(X)— M,n C My(B) C such that

N(K)
max{K,1} —
(L] + [LoDlp = [H]lp (e4.126)

N(6,G,P) and (e4.125)

for some unital homomorphism H : C(X) — Mi4n(B) with finite dimensional range.

Proof. Write C(X) = lim;,+(C(Y,), where each Y,, is a finite CW complex. We use 1, :
C(Y) — C(X) for the homomorphism given by the inductive limit system. Without loss
of generality, we may assume that G C ,,(C(Y;;,)) for some m > 1. Let G’ C C(Y,,) be a
finite subset such that 1,,(G') = G. We may further assume that P C [1,,](K(C(Y.,))) and
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P’ C K(C(Yy,)) is a finite subset such that [1,,,](P’) = P. As defined, we also assume that (4, G’)
is a K K-triple for C(Y,).

Let 1, (C(Ys)) = C(Y), where Y is a compact subset of Y;,. Note that z,, induces an
embedding ¢ : C(Y) — C(X). Denote by s: X — Y the surjective continuous map given by 1,
Le, 1(f)(y) = f(s(y)) for all f € C(Y).

Suppose that Y;, is a finite disjoint union of connected finite CW complexes Z1, Zo, ..., Z;. One
can choose &; € Z; such that & € Y, 1 =1,2,...,1. There are s1, So, ..., s, € Uéleo(C’(Zi \ {&1))
such that [1,,,](s;) = gi, i = 1,2, ..., k. Write Ko(C(Z; \{&}) = ZF) @ G, where G; is the torsion
subgroup. Since K((C) = Z and K;(C) = {0}, any homomorphism from K;(C(Y,,)) into K;(C)
vanishes on Tor(K;(C(Y.,))), ¢ = 0,1. To simplify the notation, without loss of generality, we
may assume that sq, so, ..., s are the standard generators for @ﬁle(k(i). We may assume that
G C C(Z;) is a finite subset such that &!_,G! = P’ and P C K(C(Y;,)) is a finite subset such
that &l P/ =P’

Applying 10.2 of [18] to each component Z;, we obtain an integer N;(d, G, P!) given by 10.2
of [18]. Let N(6,G,P) = 3_\_, Ni(6, G/, PY).

Now let L : C(X) — B be a ¢-G-multiplicative contractive completely positive linear map .
Put L' = Lo, : C(Y,,) = M,. Let K € Homp(K(C(Y,,)), K(B)) be given by L'. Let r; €
KK(B,C) be given by a point-evaluation, if B = M,,(C(][0, 1]), or ; is given by the identity, if
B = M, In either cases, one may view £ is an identity on K(B) = K(C). Put

K =max{|x(sj)| : 7 =1,2,...,k}.

It follows from 10.2 of [I8] that there exists an integer N(K) > 1 and unital §-G’-multiplicative
contractive completely positive linear map Ly, : C(Y,,) — M K(n) Such that

N(K)
-~ 7 < .
K] S N(6,G,P) and (e4.127)
[Lollkcoznieyy = —(B1 X 8)|k@o@\ie)), =121 (e4.128)

If N > N(K)/n, by adding some point-evaluation, if necessarily, we may assume that L{; maps
C(Y,,) into a C*-subalgebra D = M,y and D is a C*-subalgebra of My (B) with 1p = Loty (B)-
Then, viewing L{, maps C(Y;,) into My (B),

%+ (Lol k(Cco(z:\fe ) = O- (e4.129)
There is a point-evaluation hg : C(Y;,) = M, +n(B) at {&1,&2, ..., &} such that
[L' & L) = [ho]- (e4.130)

We may write
I

ho(f) =Y f(&)p; for all f e C(Y),

i=1
where p1, p2, ..., p; are mutually orthogonal projections in My 1 (B). There is a unital contractive
completely positive linear map Lo : C(X) — My (B) such that

Lo © tmlc(y,) = Lo-
Note that Lo is §-G-multiplicative. Define H : C'(X) — My+1(B) by

l

H(f)=> f(s(&))pi for all fe C(X).

1=1
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Then
[L ® Lo]lp = [H]|p.

0

Lemma 4.7. Let X be a compact metric space, let € > 0, let F C C(X) be a finite subset.
There exists a finite subset {x1,z2,...,xm} C X (m > 1) satisfying the following: for any unital
homomorphism hgy : C(X) — C([0,1], M,,) with finite dimensional range,

m

I(ho @ h)(f) = D f(za)pill < ¢ for all f € F, (e4.131)
i=1

where hy : C(X) — C([0, 1], M(y,—1),) is a unital homomorphism with finite dimensional range

and {p1,p2, ..., Pm} is a set of mutually orthogonal rank n projections.

Proof. Let n > 0 such that
|f(x) — f(2)| < €/4 for all fe F,

provided that dist(x,2’) < n. Let {x1,22,...,2;n} be an n-dense subset of X. Suppose that
ho : C(X) — C([0,1], M,,) is a unital homomorphism with finite dimensional range. Then there
are yi, Y2, ..., yn € X and mutually orthogonal rank one projections eq, e, ..., e, such that

ho(f) = fyi)ei for all feC(X). (e4.132)
=1

Divide {y1,y2, ..., yn} into N disjoint subsets Y7, Ya, ..., Y with 1 < N < m such that
dist(ys, z;) <, (e4.133)

ify; €Yj. Let Bj = Zyie)/j e; and denote by R; the rank of F;, j = 1,2, ..., N. Choose mutually
orthogonal projections qi,q2,...,qm € C([0,1], M(;,_1),) such that rank of ¢; = n — R;, j =
1,2,..,N and rank ¢; = n if N < j < n. Note Z;n:l 4j = 1M, _,),- Define hy : C(X) —
C([O’ 1]’ M(m—l)n) by

h(f) =) flxj)g for all feC(X).
j=1
Let pj = Ej +¢q; if 1 < j < N and p; = ¢q; if N < j < m. Note that p; has rank n for
j=1,2,...,m. One then checks that

I(ho @ h)(f) = D F(aw)pell < e for all f e F.
k=1

0

Lemma 4.8. Let X be a compact metric space, let P C K(C(X)) be a finite subset and let G
be the subgroup generated by P. Suppose A : (0,1) — (0,1) is a nondecreasing function, n > 0.
and A1, A2 > 0 are given. Suppose that g1, gz, ..., gk are generators of G Nkerpc(x)-

Suppose that L, A : C(X) — A (for some unital separable simple C*-algebra with tracial
rank at most one) are two §-G-multiplicative contractive completely positive linear map for which
[L](g;) and [A](g;) are well defined (i = 1,2, ...,k), where § is a positive number and G is a finite
subset of C(X),

IT([L])(g:))] < o and |T([A)l(g:))| <o for all T € T(A), i=1,2,...k, (e4.134)
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for some 1 >0 >0, and

pror(Or) = A(r), proa(Or) 2 A(r) (e4.135)
(e4.136)

for all T € T(A) and for all r > n.

Then, for any € > 0 and any finite subset F, any mutually orthogonal projections e, ea, ..., en,
any n > 0, any finite subset H C A and Rg > 1, there exists a projection p € A and a unital
C*-subalgebra B = EB;-”ZlC(Xj,MT(j)), where X; = [0,1], or X; is a single point, with 1p = p,
mutually orthogonal projections €}, €, ...,el\ € B and a unital (§+¢€)-G-multiplicative contractive
completely positive linear map n, 1y : C(X) — B such that

IL(f) = [(1 = p)L(f)(L = p) + L1 (Nl <e, ( )
[ACS) = (X =p)AS)A = p) +¥2(f)l <€ for all f€F, ( )
(1 —p) <n, 7(e)) >min{(1 — X\)7(e;) : 7 € T(A)} for all T € T(A) ( )
r(j) > Ro, j=1,2,...k, (e4.140)
Ipeip — el < €,tj2(€) > min{(1 — A1)7(e;) : 7 € T(A)} ( )
It ([¥1](9:))] < (1 + A)o, [t ([$2)(9:)] < (1 + Ar)o ( )

j=12,..,k and z € X; ( )

(

for all > 2(1 4+ Xa)n (We use tj, for 7j, @ Trr on B® Mg, where t;.(f) =to f(x) for all
[ € C(Xj, My;)), for all x € X and t is the normalized trace on M, ;) and Trg is the standard
trace on Mp.)

Moreover, for any eg > 0, one may assume that

lpa — ap|| < €0 and pap €, B for all a € H.

If furthermore, [L]lp = [Allp (in KK(C(X), A), then, by taking small 6 and larger G, one
may further require that
[]lp = [a]lp in KK(C(X),B).

Proof. The proof is a modification of that of Lemma 9.7 of [I8]. We repeat many arguments
here. Let p;,q; € Mr(C(X)) such that

il = lg) =95, §=1,2,....k,
for some integer R > 1. There exists of a sequence of projections p, € A such that

li_>m llepn — pne|| =0 for all c € A, (e4.145)

and there exists a sequence of C*-subalgebras B,, = @;n:(?)C’(Xj,n, M,(jn)) (where X, = [0,1]
or X is a single point) with 15, = p, such that

li_>m dist(ppcpn, Bn) = 0 and (e4.146)
lim sup {7(1—py)} =0. (e4.147)
N0 1T (A)

Moreover, by 3.3 of [15], we may also assume that r(j,n) > Ry for all j. For sufficiently large n,
there exists a contractive completely positive linear map L/, : p, Ap, — B, such that

li_)m L (a) — pnapy]| =0 for all a € A
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(see 2.3.9 of [11]). There are (see 2.55 and 2.5.6 of [11]) mutually orthogonal projections e; ,, € By,
such that
li_)m |pneipn — €l =0, i=1,2,...,N.

We have
Tim [L(f) ~ (1~ p) L~ pa) + Lo L] = 0 and (e4.148)
Jim A = (1= p)A(L = pa) + Lo A = 0 for all f € C(X). (e4.149)

Define LIn,R : MR(A) — MR(A) by L%@idMR and LR : MR(C(X)) — MR(A) by LR = L@idMR.
Suppose that there exists a subsequence {ny}, {jr} and {zx} € [0, 1] such that

tjean (Lm0 Lr(Di — ¢i))] = (1+ Ao (e4.150)

for all k. Define a state T, : A — C by Ty(a) = tj, 2,.(a), k = 1,2,.... Let T be a limit point.
Note Ty(14) = 1. Therefore T is a state on A. Then, by (eZ£I50),

IT([L](g:))] = (1 + A1)o. (e4.151)

However, it is easy to check that T' is a tracial state. This contradicts with (e4I34]). Put
Y = L), o L and 99 = L] o A for some large n. Then we have shown (for the choice of large n)
that (e4.137), (e4.138) and (e4.143]) hold.

A similar argument shows that, for some sufficiently large n,

tj,x(eé’n) >min{(1 — \)7(e;) : 7€ T(A)},

i=1,2,..,N, forall z € Xj and j =1,2,...,m(n).
Moreover, a similar argument shows that, for any finitely many f1, fo,...., fy € C(X) such
that 0 < f; <1,7=1,2,..., N, we may assume (by choosing large n) that

tizo¥i(fr) > (1 —A1/2)min{7(L(f;)) : 7€ T(A)} and (e4.152)
tizova(fi) > (1 — A /2) min{r(A(fx)) : T € T(A)} (e4.153)

for all z € X;, j = 1,2,...,m. By choosing sufficiently many (but finitely many), using the
argument in the proof of B.2] we may assume that

1,00, (07) = (1= M)A(/2(1 + X)) (e4.154)

forall > 2(1 4+ Ag)p and for all x € X, j =1,2,...,m and i = 1, 2.

So the first part of the lemma follows by choosing B to be By, p to be p,, and 1)1 to be L/ oL
and 1y to be L, o A for some sufficiently large n. Note, by (e4.I45]) and (e4.146]), for any ¢y > 0
and any finite subset H, we can assume that

lpa — ap|| < eo and pap €., B

for all @ € H.

To see the last part of the lemma holds, taking a commutative C*-algebra C' and considering
the maps L ®idyy,, (o) and A ®idyy,, () from C(X) into A® M,,(C). There is Ko > 1 such that,
if x € Tor(K;(C(X)))NG, then Koz = 0. Let C1, Cy, ..., Ck,1 be unital commutative C*-algebra
such that Ko(Cj) = Z®Z/jZ and K,(C;) = {0}, j = 1,2, ..., Ko!. Let m > 1 be an integer such
that a set of generators of Ky(C(X)® C;) NG and K;(C(X) ® Cj) NG can be represented by
projections and unitaries in M,,(C(X) ® C;) = C(X)®Cj @ My, j =1,2,..., Ko!.
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Choose 0 < €1 < € and a finite subset F; D F (which depends on K and m above). Then
one applies the first part of the lemma for this ¢; and F;. For a finite subset of projections
Ei,Es,....Ex € C(X) ® C; ® My, if in addition that [L]|p = [A]|p (with sufficiently small §
and sufficiently large G), there are partial isometries Wi, Wa, ..., Wk € A® Cj ® M,4 g for some
integer R > 0 such that

I/VZI/V;< = E; D idMR(Cj) and WZ*WZ = E;/ D idM]g(Cj))
where E! and E!' are two projections such that
|E; — L ®idpy,,(c,) (Bl < 1/16 and ||E] — A @ iday, ;) (Ei)l| < 1/16,

i=1,2,.., K.
Fix €y > 0. One then chooses a large H so that

lpa — ap|| < €0 and pap €, B
imply that
(p @idar,,, n(c))Wi = Wilp @ idarg )l < e, ( )
[(p @ idas,, , u Cj))(E ®1dMR( ) — (E; ®1dMR( (P @id,, pep)ll < e and (e4.156)
[(p ®idas,, , u CJ))( ®1dMR(C ) — (B @idpgc NP @idas,, pe)ll < e, (e4.157)
1(p ® id,, ;) Ei — Ei(p ®iday,, ;)] < e1 and ( )
1(p @ idar,, ) B — B (p®idp,,(c;)ll < e1 ( )

as well as
(p @ idpg,,(0,) Ei(p ®@ida,, ;) € B © My (Cy), ( )
(p ®idpg,, (c; )) 7 (p ®@ida,,(c;)) €a B © My (Cj), ( )
(p®@idar,,, n(c;))Wilp ®@idar,, ()P ®1dpr,,  p(c;) € B © Mt r(Cj), (€4.162)
(p@idag,,, pe)) (B ® ldMR(C ) (P @1dpr,, r(0;) € B® Myir(C)) and ( )
(p @ idps,, , n(e) (B @idargc,)(p @ idy, +R(o-)) € B® Miyir(Cj). )

It follows that (with small 61) there are projections ¢}, e/ € B ® M,,(C;) such that
le; — (p ®idag,, ;) Ei(p @ idag, ;)| < 261, [lef — (p @ idag,, (o) Ei (p ®@idag, ;)] < 21 and
lei] = [e5] in Ko(B).
Therefore, one has
[n]([E]) = [¥2l([Ei]), i=1,2,..., K.

From this, one concludes that one may require that

(1 @ ide) ]l ko(c(x)ec)na = W2 @ ide;]| ko (x)ec))na
j=1,2,..., Ky!. A similar argument shows that one may also require that

(V1 ®@ide;]| K, (cnec)na = Y2 @ ide]| Kk, (c(x)ec;)nas

ji=1,2,..., Ky!. It follows that one may require that

[1] = [tho] in KK(C(X),B).
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5 The main results

Lemma 5.1. Let X be a compact metric space, let € > 0, €9 > 0, let {x1,x9,....,xp} C X, let
F C C(X) be a finite subset and let A : (0,1) — (0, 1) be an increasing map with lim;_,o A(t) = 0.
Let P C K(C(X)) be a finite subset, K > 1 be an integer and let ng > 0. Then, there exists
n > 0,6 >0, a finite subset G C C(X) satisfying the following: For any unital 6-G-multiplicative
contractive completely positive linear maps L, A : C(X) — A for some unital separable simple
C*-algebra A with tracial rank at most one for which

[A”P = [L”P and NTOL(Or)aﬂroL(Or) > A(T) (e 5.165)

for all open balls O, with radius 1 > r > n, and, for any ego > 0 and any finite subset H C A,
there exist mutually orthogonal projections
P17P27P37p17p27 <y DPm € A with Pl ® P2 ® P3 S Zz,llpl = 1A7

T(P3) >1—¢y for all T € T(A) and (e5.166)

KPP <Ip], i=1,2,...m, (e5.167)

and there ezists a unital e-F-multiplicative contractive completely positive linear map ¢ : C(X) —
Py BP, whose range contained in a finite dimensional C*-subalgebra, unital e-F-multiplicative

contractive completely positive linear maps Hy, Hy : C(X) — P3BPs C P3APs, where Py, Py €
B, B = EB;-Vlej, and Bj = C(Xj, M, ;) (X; =10,1], or X is a point) with

[Hi]lp = [Ha]|p = [ho]|p,

for some unital homomorphism hy : C(X) — C, where C = P3BP3, C = eajyzlcj and Cj =
C(Xj, M), and a unitary W € A such that

IL(f) = (PLL(f)Pr & Hi(f) @ () @ Y flapilll < e (€5.168)
i=1
|AAW o A(f) = [PLAAW o A)(f)Pr & Ha(f) ®(f) @ Y f(zi)pi]l <e  (e5.169)
i=1
for all f € F, (e5.170)
pt; por; (Or) = A(r/3)/2 and t(Py + sz) < € (e5.171)
i=1

for all v > mno, x € X, where t;, is the composition of the point-evaluation at x and the
normalized trace on M, (jy, j = 1,2,....k, and for allt € T(B), and

|Pra — aP1|| < €0, (1 — Pr)a(l — Py) €¢y B for all a € HUL(F)UA(F), (eb.172)
where 1g =1 — P, Moreover,
[Plel]‘p = [Pl(AdW OA)Pl]‘p. (e 5.173)

Proof. Let €,¢€p, {x1,22,...,2,m} C X, a finite subset F C X, a finite subset P C K(C(X)), A,
K > 1 and ng > 0 be as described. We may assume that (e, F,P) is a K L-triple for C(X) and
0 < eg,e < 1/16.

Let 61 > 0 (in place of 0), G1 C C(X) be a finite subset (in place of G), P; C K(C(X)) (in
place of P) be a finite subset and K be an integer (in place of L) for min{e/16,¢,/16} and F
required by 3]
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We may also assume, without loss of generality, that P C P; and (d1,G1,P;) forms a K L-
triple. We may further assume that, if L', L” : C(X) — C (for any unital C*-algebra C) are
e-G1-multiplicative contractive completely positive linear maps and

IL'(f) = L"(f)]| < e for all f€ G,

then
[L]1p, = [L"]lp, -

Let G be the subgroup generated by P; and let sq, s2, ..., sk, be a set of generators of G N
kerpo(x)-

Let €3 = min{e/64, ¢y /64,61/2,0'/2} and Go = FUG UG

Let N; = N(e2,G2,P;) be as in where ¢ is replace by €9, G is replace by Gy and P is
replaced by P;.

Let Ny (in place m) and {y1,y2,...,yn, } (in place of {x1,z2,..., 2, }) be as in 7] for €5 (in
place €) and Ga (in place of F). One may assume that No > m and y; =z, j = 1,2,...,m.

Choose 7' > 0 satisfying the following:

|f(z) = f(2')] < e2/16
for all f € Go, if dist(z,2’) < 21/. Moreover, we may assume that
O4n’(yj) N O4n’(yi) = @ if 4 7& ]
Choose 1 > 0 such that ” < np/4 and

Choose
n=min{n/4,n2/4 7' /4, 7" /4}.
Let d2 > 0 (in place of J) and let G3 C C(X) be a finite subset required by Lemma 9.6 of
[18] for €2/2 (in place of €), G2 (in place of F), n and 1/256 (in place of r).

Choose K to be an integer which is greater than the integer K given by the lemma. We may
assume that K > 4. Choose d > 0 such that

16dK N1 N3 (K1 +1) < egA(n) /2. (e5.174)

It follows from that there are d3 > 0 and a finite subset G4 C C'(X) such that, for any
unital d3-G4-multiplicative contractive completely positive linear map ¥ : C(X) — C (for any
unital C*-algebra C with T'(C) # 0),

|T([W](s;))| < d/8 for all 7€ T(C).

Let § = min{ez/4,82/4,03/4,04} and G = U2_,G;.

Now suppose that L, A : C(X) — A, where A is a unital simple C*-algebra with tracial rank
at most one, satisfy the assumptions of the theorem for the above d, G, n and A.

By Theorem 9.6 of [I§] and by the choice of 1, there exists projections Q1, Q2 € A and two sets
of mutually orthogonal projections {E1, Ea, ..., En, } in (1 —Q1)A(1— Q1) and {EY, Ej, ..., Ey, }

in (1 —Q2)A(1 — Qg) such that 2 E; =1 - Qq, N2 El = (1 - Qy),

N>
IL(g) — [@:1L(9)Q1 ® > g(yi) i)l < e2/2, (€5.175)
=1
N2
IA(g) — [Q2A(9)Q2 @ > g(wi) Ef|| < €2/2 (€5.176)
i=1
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for all g € Go,

A(n) > 7(E;)
A(n) > 7(E7)

for all 7 € T(A). Since A has tracial rank at most one (see Lemma 9.9 of [I8]), there is, for each
i, a projection ¢; < E; such that [¢;] < [E] and

(1—1/2")A(n) and (e5.177)

>
> (1-1/2"2)A(n), i=1,2,..., Ny (e5.178)

7(g) > (1 —1/2HA(n) for all 7€ T(A).

Let ¢} < E! such that [¢;] = [¢}], i = 1,2,...,Na. Let Qo =1 — Zivjl ¢ and Q) =1— Zlel q,.
Then, we have that

Ny No

I1L(g) — [@1L(9)Q1 & Zg(yi)(Ei — )+ Zg(yi)%']u < €2/2 (5.179)
27\[12 27\[12

IA(9) = [Q2M(9)Q2 @ Y g(wi) (B — ) + > 9(yi)gill < ea/2 (e5.180)
i=1 i=1

for all g € Gy. Since [¢;] = [¢}], ¢ = 1,2, ..., Na, there is a unitary W; € A such that
Wl*ngVl = (q;, 1= 1,2,...,N2 and WfQBWl = QQ.

Define L; : C(X) = QoAQo by L1(f) = Q1L(f)Q1®3 N2, f(yi)(Ei—g;) forall f € C(X). Define

Ay O(X) = QoAQo by Ai(f) = WiH(QaA(f)Q1 ® SN2 f(wi) (B! — )W, for all f € C(X).
Then L; and Ay are es-G4-multiplicative and

No
IL(9) = [L1(9) + > 9(wi)ailll < e2/2 and (e5.181)
i=1
No
IAd W 0 A(g) — [A1(g) + D g(i)aill < e2/2 (e5.182)
i=1
for all g € Go. Note that
[L1](s;) = [L](s;) and [A1](s;) = [A](si), i =1,2,....ko. (e5.183)

We compute that
tro@1LQ: (Or) = A(r) — N2A(n) = 255A(r) /256

for all 7 € T(A) and r > /4. It follows that

firor, (Or) > 255A(r) /256 (e5.184)
for all 7 € T'(A) and r > /4. Similarly,

firon, (Or) > 255A(r) /256 (e5.185)

for all 7 € T(A) and r > /4.
Let 0 < %. Let €gg > 0 and let H C A be a finite subset. Define

Hl =H UL(g) U Ll(g) UAl(g) UAdWI OA(g) U {P17q17q27 "'7qN2}‘
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Let 0 < 0p < min{ea/2,9/4, €00} and put

Na
L(f) = L) ® Y fly)a; and (e5.186)
=1 v
N(f) =M e fa (5.187)
i=1

for all f € C(X). Since A has tracial rank at most one, by [£.8] there exists a projection Q3 € A
and B = @;ylej with 1p = @3, where B; = M,(;)(C(X;)) and X; = [0,1], or Xj is a point,
such that

|Qsa — aQs|| < 0o, Q3aQ3 €s, B for all a € Hy, (e5.188)

IL(f) = [(1 = Q3)L'(f)(1 — Q3) ® La(f)]l| < ea/2No, (e5.189)

IA(f) = [(1 = Q3)A(F)(1 = Q3) ® A3(f)]]| < e2/2N> for all f € g, (e5.190)
7(1 —Q3) <6 for all 7€ T(A), (e5.191)

T2 ([L3](si)] < (1+1/128)(d/8), [Tja([As](s:)] < (1 +1/128)(d/8) (5.192)
ut, o1s(0r) = BAr/3)/4, pr, ons(On) = 3A(r/3)/4  (e5.103)

for all 7 > ng, and for all j and z € X, where T}, is the normalized trace of M, ;) at z € Xj,
and

2B KNI N2(Ky +1)

r(5) > YD) , j=1,2,...,N. (5.194)

Moreover,
[Ls]|p, = [As]|p, in KL(C(X),B). (e5.195)

Therefore
1QsL'(£)Qs — Ls(f)ll < €2/2Nz and [|QsA'(f)@s — As(f)l| < €2/2N; (€5.196)

for all f € G. By [4.8] we further obtain mutually orthogonal projections ey, es, ...,en, € B such
that

No
IL3(f) = [ELs(HE @Y fyieilll < e2/2 (5.197)
i=1
N2
1A3(f) = [EAs(E @Y flyieilll < e2/2 (e5.198)
i=1
for all f € G, where E =1 — ?21 e;. Moreover we require that

A()/2 > Tyuler) = (1 - 1/250)A(0), A(n)/2 > 7(e)) = (1 - 1/250)A(p)  (e5.190)

for all x € X, where T}, is the normalized trace evaluated at z, and for all 7 € T(A), j =
1,2,...,No.
Define Ly = EL3E and Ay = EAsE. We compute, by (e5.193) and (e5.199)

3A(r/3)/4 — NoA(n) > A(r/3)/2 and (e5.200)
A(r/3)/2. (e5.201)

HT; poLy (OT)

>
KT oAy (Or) >
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for all » > 19 and for all z € X; and j =1,2,...,N.
We compute that

[La)(s;) = [A4(s;) = [L](s7) = [A)(s;), j=1,2,.... ko (€5.202)

Put Cj, = E(Mr(])(C(Xj))E = Mru(j)(C(Xj)), where r”(j) < ’f’(j), and Put L4’j =T 0 L4 and
Ay =mjo Ay, where 7 : EBE — EB;FE is the projection, j = 1,2,..., N.
Put
dj = maX{‘T],x([Ld(Sk))‘ k= 1,2, ...,ko},

j=1,2,...,N. Note that d; < d/4, j =1,2,...,N. B
It follows from 4.6 that there exist unital ez-Go-multiplicative Lo j, Lo j : C(X) — M, (C(Xj;))
whose ranges are contained in finite dimensional C*-subalgebras, where

Jj = dler(j) < leT‘(]) (e 5.203)
such that
[La; @ Lojllp, = [Hojllp, and [Loj ® Lo jllp, = [hollp, (e5.204)

for some unital homomorphisms Ho ; : C(X) — M5y, 5,(C(X;)) and hoj : C(X) = May, (C(X;))
with finite dimensional range.

By applying 3] we obtain a unital homomorphism hy; : C(X) — My, i, (C(X;)) with
finite dimensional range and a unital homomorphism Hy ; : C(X) — My, (k,+1)(C(Xj)) with
finite dimensional range such that

(Lo ® Lo ; @ h1;)(f) — H1;(f)|| < min{e/16,€0/16} for all g € F. (e5.205)

It follows from M7 that there are mutually orthogonal rank 2J;(K; + 1) projections qg’j €
Mp,20, (k1 4+1)(C(X;)) and a unital homomorphism hg; : C(X) — Mn,—1)@27, (k,+1)(C;) with
finite dimensional range such that

No
[ H1,;(f) ® hoj(f) — Zf(yi)qg,jH < ey for all feF, (e5.206)

i=1

j=1,2,..,N.
There is, for each i and j, by (€5.199) and (e5.174), a projection pj ; < e; such that

€0/128Ny > Tj . (p) ;) > €0/256Na > 16dK Ny No(K; + 1) (e5.207)

forre X;,j=1,2,..,N and i =1,2,..., N.
Put Ly = Zj\le Lo j, Lo = Z;VZI Lo, hi = Z;VZI hi j, i =1,2. Thereis a projection ¢; ; < p;J»
in Bj such that [g; ;] = [¢; ;] in Ko(Bj), j =1,2,...,N. Put pj = Z;V:1 ¢ij, ©=1,2,..Na. Then

T;o(p]) < 2J; (K1 +1)/r(j) for all z € X. (e5.208)

Thus we obtain a unitary Wy € B such that

No
IAdWo o (Lo @ Lo ® ha @ ha)(f) = Y F(ui)pl|l < e2 +¢/16 (e5.209)
i=1

for all f € F.
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Now define

Hy(f) = La(f) ® AdWoo Lo @ ha(f) @ ha(f) & > f(un Z Flyj)(ei —pY)
k=1 j=m+1
for all f € C(X), ¥ = AdWyo L. Let P, = (1 = Q3), Po = WiLo(Lox))Wo, P3 = Hi(lo(x))-

pj =p; =P}, j =1,2,..., Na. Then we estimate that, by (@:EZZD and (e5.209]),

ILs(f) — (Hy @ (£) @ > Fz)pi)|
Jj=1

No
< Ls(f) = (La(H) ® ) flw)ep)ll +

=1

| La(f @Zf (yj)e £) @ AAW(Lo ® Lo @ hn @ ho)(£) © > £(y)p))|
j=1

< 62/2 +e3+€/16 = 3e2/2 + €/16

for all f € F. It follows from (e5.181]), (e5.186]), (e5.189) and (e5.213)) that

IL(f) = [PLL()Pr & (f) ® > flz)p; & Hi(f)]|
j=1
< L) =LA+ 1L (f) — 1= Q)L (f)(1 — Qs) ® Ls(f)||
+(1 = Q3)L'(f)(1 — Q3) ® Ls(f) — PLL(f)P1 & Ls(f)||

+H[PL(f) P © La(f) — [PAL(f)Pr © Hi(f) @ ¥(f) @ Zf(fﬂj)Pj]H

< €/2+4€/2+363/2+€/16 < €

for all f € F. Define

N»

N2
Hy(f) = As @ AdWoo Lo (f) @ ha(f) @D flur)lei—p) & > fly;)(e; —

k=1 j=m+1

Similarly, we also have

IAd W1 0 A(f) — [PLAAWi o A(F))PL@w(f) @ D flaj)p; & Ha(f)]] < e
j=1

for all f € F.
Note also that, (by (e5.174) and (e5.208))
€A (n) / 1" c0A(n) .
>T (p) = T (ph—p") >0 9F.
128N, = Ty,x(pz) Tj,x(p] p]) = 256N, 2J; (K1 +1)/r(4)

> 14KdN1N2(K1 + 1)
for all 7 € T(A) and i = 1,2,..., Ny. Therefore, by (e5.191]),

7(pi) > (1 — 0)14dK N1 No(Kq + 1) for all 7 € T(A).
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Note that, by (e5.203]),

Tjo(P2) < djNy and 7(Py) =7(1 - Q3) <0 (e5.223)
forall z € X;, j =1,2,...,N and for all 7 € T(A). It follows that
T(pi) > K7(Py) + K7(Py) for all 7€ T(A), i=1,2,..,m. (e5.224)

This gives (e5.167). To obtain (e5.166), we note, by (e5.207) and (e5.174) that

m

€0
T(P) +7(P2) + ; m(p;) < 6+dN;+ ;" (5.225)

©0A(n/2)  €«An/2) <
= + — + — < €y/2 eH.226
AN, N,K = 256K 128 o/ ( )

for all 7 € T'(A). We also have that

Tja(P2) + > Tja(pi) < €/2 for all z € X;. (5.227)
=1

Thus -
t(PQ + sz) < 60/2
i=1
for all ¢t € T(B). This implies (e5.166). We write C = P3BP;y = EBé-V:lC'j, where C; =
M,;1(C(X5)), j = 1,2,...,N. Finally, from (€5.200) and (e5.201),
th,onz-(Or) > A(r/3)/2 (e5.228)
for all » > ng and x € X, where ¢;, is the normalized trace of M,/ ;) evaluated at z € Xj,

7=1,2,...,N and 7 = 1,2. The lemma follows.
O

Lemma 5.2. Let C be a separable unital C*-algebra with T(C) # 0, let U C U.(K1(C)) be a
finite subset, F C C be a finite subset and let X > 0. There exists § > 0 and a finite subset
G C C satisfying the following: Suppose that Ly, Ly : C — A (for some unital C*-algebra A) are
two §-G-multiplicative contractive completely positive linear maps such that

dist (L1 (w)), (La(u))) < T (€5.229)

for all w € U and for some I' > 0. There exists a finite subset H C A and o > 0 such that, if
p € A is a projection such that

llpa — ap|| < o,pap €, B for all a € H,

where 1 = p and B C pAp is a unital C*-subalgebra, and Ay,As : C — B are two 26-G-
multiplicative contractive completely positive linear maps such that

IpLi(g)p — Ai(g)|l < o for all g € G,
then

dist((A1(u)), (A2(u))) < T+ A

for allu e U.
Moreover,

|[ToAi(f) —7oAa(f)| < A+ max{|to Li(f) —ToLa(f)|: feF, teT(A)} (e5.230)
forall f € F and 7 € T(B).
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Proof. Let U and F be fixed. Then there is an integer k£ > 1 such that every element in i is
represented by a unitary in My (C'). To simplify notation, replacing A by My (A), replacing B by
M},(B), and later replacing L; by L; ® iday,, ¢ = 1,2, without loss of generality, we may assume
that U is actually in U(A). We choose § and G such that for any 25-G-multiplicative contractive
completely positive linear maps L from C, (L(u)) is well defined for all v € U.

Now let L; and Lo be as described (for the above choice of ¢ and G). Suppose that U =
{u1,ug,...,;um}. Then there are wy, wa, ..., w,, € CU(A) such that

(L1 (ui)) (Lo (ug)) — wil| < T+ A/2.

It is clear that, if H is sufficiently large (containing at least Lq(u) and Lo(u) for all u € U and
many other elements in U(A)) and o is sufficiently small, (pL;p(u;)) are well defined and

[{pLip(u;)) — (Ai(uz)) || < A/16
(j=1,2,...,m and i = 1,2) and there are unitaries vy, va, ..., v, € CU(B) such that
prlp - UZH < )‘/167 i = 1727 ey T

It follows that

dist((A1(u)), (Ag(u))) < T+ A (e5.231)

for all u € U.
Similarly, for each f € F, there are x1(f),2(f), .., Tym)(f) € A such that

L1 (f Z Al < A/8 and (€5.232)
fom
| Lo (f Z Il < M+ A/8 (€5.233)

where M = max{|T o Li(f) — 1o Lo(f)| : f € F, 7 € T(A)} (see [1]). We compute that, with
sufficiently large H and small o, there are y1(f),y2(f), s ¥¢m)(f) € B such that

f(m)

AL (f Z yi () ()|l < A/4 and (€5.234)
f(m

AL (f Z v () ()l < M+ X\/4 (€5.235)

for all f € F. This implies that
‘TOAl(f) —TOAQ(f)’ <M+ A

for all f € F and for all 7 € T'(B).
U

Theorem 5.3. Let X be a compact metric space and let A : (0,1) — (0,1) be a non-decreasing
function with limy_,o A(t) = 0. Let € > 0 and F C C(X) be a finite subset. Then there exists n >
0, 0 >0, a finite subset G C C(X), a finite subset H C C(X)s.q., a finite subset P C K(C(X)),
a finite subset U C U (K1(C(X))), 1 > 0 and v2 > 0 satisfying the following: Suppose that
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Li,Ly: C(X) — A are two unital §-G-multiplicative contractive completely positive linear maps
for some unital simple C*-algebra A of tracial rank at most one such that

[Li]lp = [Lo]lp, (€5.236)
|t o Li(h) —ToLa(h)| < 71 for all h € H, (e5.237)
dist((L1(w)), (Lo(w))) < 2 for all ueld (e5.238)
pror; (Or) > A(r) (e5.239)
for all T € T(A) and for all r > n. Then there exists a unitary W € A such that
IAAW o L1 (f) — Lo(f)|l < € for all f €F. (e5.240)

Proof. Fix € > 0 and a finite subset F C C(X). Let 1 > 0 be as in for €/2 (in place of
€) and F. Let o1 = A(n1/3)/3. Let g2 > 0 be as in 3.6 for €/2 (in place of €), F, m and o;.
Let 09 = A(n2/3)/3. Let n3 > 0 be as in for €/2 (in place of €), F, m, o1, 12 and o9. Let
o3 = A(n3/3)/3. Let ny > 0 be as in 3.6l for €/2 (in place of €), F, n1, o1, n2, 02, n3 and o3. Let
oq = A(na/3)/3.

Let v > 0 ( in place of v1), 74 > 0 (in place of ¥2), 41 (in place of §), G; C C(X) (in place
of G) be a finite subset, P; C K(C(X)) (in place of P) be a finite subset H C C(X)s,. be a
finite subset and U; C U.(K:(C(X))) (in place of U) be a finite subset as required by for
€/2, F, n; and o; (i = 1,2,3,4). Let N > 1 be an integer such that every unitary in U; is in
My(U(C(X)).

Let Ay = A/2. Let 62 > 0 (in place of §) and Gy C C(X) (in place of G) required by 3.4 for
A (in place of A), U (in place of U), n4/2 (in place 1), 15/16 (in place of A\;) and 1/32 (in
place of Ay).

Let 63 > 0 (in place of §), G3 C C(X) (in place of G) be a finite subset, P, C K(C(X))
(in place of P) be a finite subset {z1,z2,....,2nm} C X, Us C U(K1(C(X)) (in place of U) and
K >1 (in place of L) be an integer required by 4] for €/2 (in place of €), F and ~4 (in place of
A).

Let 64 > 0 (in place of 9), G4 C C(X) (in place of G) be a finite subset required by Lemma
for 74/8 (in place of \), Uy UUs (in place of U) and H (in place of F).

Let 05 = min{e/4,6; : 1 <i <4} G5 = FUUL G, U =U; Ula, 71 = 7, /8 and 72 = 72/8.
Put ¢y = min{+|/8N,~4/8N} and ny = min{n; /4 : 1 <i < 4}.

Let n > 0, ¢ > 0 (in place of §), G C C(X) (in place of G) be a finite subset required by
B for d5 (in place of €), €y, {z1,22,...,zm}, G5 (in place of F), A, K and 7.

Define 6 = min{dg,d5}, G = Gg UG5 and P = Py U Ps.

Now suppose that Ly, Ly : C(X) — A are two unital J-G-multiplicative contractive com-
pletely positive linear maps, where A is a unital simple C*-algebra of tracial rank at most one,
which satisfy the assumption for the above defined A, n, H, U, 1 and ~s.

Let H; C A (in place of H) be a finite subset and o > 0 for Ly, Lo, U, N, /8 (in place of I")
and min{\] /8, \;/8} (in place of \) (for C = C(X)) be required by Let €gp = 0.

Let 07 = min{o/2,d}.

By applying 511, for H; (in place of H), there exist mutually orthogonal projections

P17P27P37p17p27 «sPm € A
with P27P37p17p27 <y Dm € Ba P+ P +P3 + Z:ilpz = 1A7

T(P3) >1—¢€ and K([P1]+ [P]) <[p], i=1,2,...,m, (e5.241)
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a unital d5-Gs-multiplicative contractive completely positive linear map ¢ : C(X) — P,AP,
whose range is contained in a finite dimensional C*-subalgebra, unital d5-Gs-multiplicative con-
tractive completely positive linear maps Hy, Hy : C(X) — P3BP3 C P3APs, where 1 = Ps,

B = 69;-\[:13]-, Bj = C(Xj, M,(;)) (X; =[0,1], or Xj is a point) with
[Hillp = [Ho]|p = [hollp

for some unital homomorphism hg : C(X) — B and a unitary Wy € A such that

I[L1(9) = [PiL1(g)Pr @ (g) @ D g(wi)ps & Hi(g)]|| < 67 and
i=1
I[AdWp o La(g) — [PL(Ad Wo 0 La(9)) Pr @ 9(g) & Y _ g(wi)pi & Ha(g)ll| < 67
i=1

for all g € Gs,
firor; (Or) = A(r/3)/2
for all r > ng and for all t € T(C'), where C' = P3BPs,
T(P2 (&) sz) < €
i=1
for all T € T(B), and,

|Pia — aP1|| < €y and
(1—P1)a(l — Pr) €y, B for all a € HyULi(Gs U La(Gs).

Moreover
[P1L1P1”73 = [PlAd Wy o Lgpl]‘p.
Put V1 = P P, ® ¢ and Vo = PLAd Wy o Ly Py @ 9. By the choice of H;,

diSt((PlLlpl(u)>, <P1Ad Wy o L2P1(U)>) < ’75/4 + ’7&/2 =X\

(e5.242)

(e5.243)

(e5.244)

(e5.245)

(e5.246)

(e5.247)
(e5.248)

(e5.249)

for all uw € U. Let D be a finite dimensional C*-subalgebra of P,AP» such that ¢(C(X)) C D.

Then ((u)) € CU(P3AP3) for all u € U. It follows that

dist((V1(u)), (P2(u))) < Az

for all u € U. By the choices of K and {x1,x9, ..., Zs, }, there exists a unitary

Wie(PL+ P+ Y p)APL+ P+ > pi)
i—1 i=1

such that

m m

W1 (Pa(f) & Zf(xz)pz)wl -0 (f) @ Zf(a:,)le <€/2 for all feF.
i=1 i=1
Define ¢, : C(X) — B by

m

1(f) =v(f)© D flzi)pi ® Hi(f)

1=1
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for all f € C'(X) and define &3 : C(X) — B by

m

Oo(f) = () © D fxi)pi & Ha(f)

i=1

for all f e C(X).
By the choice of 4, G4 and H1, and applying [5.2] we obtain that

dist({(®1(u)), (Pa(u))) < Ny/8 (€5.252)
for all w € U and
|T o ®1(g) — T o Pa(g)| < N, /4 (e5.253)

for all g € H and for all T' € T'(B).
Combining with (e5.246]), we obtain that

[to Hi(f) —to Hao(f)] < Nj/4+ 2 < N (e5.254)

for all f € H and for all ¢ € T(C). Using the de la Harp-Skandalis determinant, combining
(e5252) and (e5.246), we compute that

dist((Hy(u)), (H2(u))) < Xy/4 + 2Neg < Xj. (e5.255)

for all w € U. Then, by (€5.249) and by applying B.6] there exists a unitary Wy € C such that
[Ad Wy 0 Ha(f) — Hi(f)|| <€/2 (e5.256)

for all f € F. Define W = Wy(W; & Wa). Then, by (e5.244)), (e5.251)) and (e5.256)), we finally
obtain that

[AdW o La(f) — L1(f)]| <€

for all f € F.
O

Definition 5.4. Let X be a compact metric space and P € M,(C(X)) be a projection, where
r > 1 is an integer. Put C = PM,(C(X))P. Suppose 7 € T'(C). It is known that there exists a
probability measure u, on X such that

(f) = /X to(f(2))dpr (x) for all feC

where t,, is the normalized trace on P(z)M, P(x) for all z € X (see 2.17 of [13]).

Suppose that Y is a finite CW complex, r > 1 is an integer and P € M,.(C(Y)) is a projection.
Let X C Y be a compact subset. Let 7w : M,.(C(Y)) = M,(C(X)) be the quotient map defined
by w(f) = f|x for all f € M,(C(Y)).

Corollary 5.5. Suppose that' Y is a finite CW complex, r > 1 is an integer and P € M,(C(Y))
is a non-zero projection. Define C' = w(PM,.(C(Y))P) as defined above. Then Theorem [5.3
holds when C(X) is replaced by C and using the measure defined in[5.3)
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Proof. Clearly the corollary holds if C' = M, (C(X)).

To prove the general case, we may assume that Y is connected. Then there is an integer d > 1
and a projection @ € My(PM,(C(Y))P) such that QM, (PM,(C(Y))P)Q = M(C(Y)) for some
integer k > 1. Put Cy = QM,(PM,(C(Y))P)Q. Then there exists a projection Q1 € Mg, (C1)
and a unitary W € Mg, (PM,(C(Y))P) such that W*@Q,W = P. Keep the notation 7 as
in B4l Note that, any unital contractive completely positive linear map L; : C — A, we
obtain a unital contractive completely positive linear map L; ® idas, @ M, (C) — M, (A). Put
Yip = (L1 @ida,)|x(cy) and ¥ = (2 ® iderl)‘W(Ql)Mkl(Cl)ﬂ'(Ql)' We see that the corollary
follows by first considering ;1 (i = 1,2) and then ¢; 5 (i = 1,2). O

Definition 5.6. Let A be a unital C*-algebra and let C' be another C*-algebra. Let L :
C' — A be a positive linear map. Let © : Cy \ {0} — N x R, be a map. We write ©(c) =
(N(©(c)), R(©(c))) for ¢ € C4 \ {0}, where N(©(c)) € N and R(O(c)) € R4. Suppose that
S C Cy is asubset. We say the map L is S-O-full, if, for each s € S, there are x1, 2, ..., Tn((s))
such that ||z;]| < R(6(s)), j =1,2,...,N(O(s)) and

N(O(s))

g = Z x;L(s)x;. (€5.257)
j=1

The following is known and easy to prove. Only part (1) is actually used in this paper.
Both hold for more general unital simple C*-algebras. For example, the class of unital separable
simple C*-algebras which satisfy the strict comparison property for positive elements.

Lemma 5.7. Let X be a compact subset of a finite CW complex Y, let P € M,.(C(Y)) be
a projection, where r > 1 is an integer, and let m : M, (C(Y)) — M,(C(X)) be defined by
7(f) = flx, Put C = n(PM,(C(Y))P).

(1) Suppose that © : C+\ {0} — N xR\ {0} is a map. Then there exists an non-decreasing
map A : (0,1) — (0,1) satisfying the following: For any n > 0, there exists a finite subset
S C Cy \ {0} such that, if A is a unital separable simple C*-algebra with TR(A) < 1 and if
L:C — Ais a unital S-O-full positive linear map, then

tror(Or) > A(r) for all T € T(A)

for all open balls O, with radius r > n.

(2) Suppose that A : (0,1) — (0,1) is a nondecreasing map. Then there exists a map
© : Cp \ {0} = N x R4\ {0} satisfying the following: For any finite subset S C C4 \ {0},
there exists n > 0 such that, if A is a unital separable simple C*-algebra with TR(A) < 1 and
L: C — A is a unital positive linear map for which

tror,(Or) > A(r) for all 7€ T(A)
for all open balls O, with radius r > n, then L is S-O-full.

Theorem 5.8. Let C' be a unital AH-algebra and let © : C4 \ {0} — N x Ry be a map. Let
e >0, F C C be a finite subset. There exists a finite subset S C A4 \{0}, 6 >0, 01 >0, o9 > 0,
a finite subset G C C, a finite subset P C K(C), a finite subset H C As,. and a finite subset
U C U(K1(C)) satisfying the following: Suppose that A is a unital separable simple C*-algebra
with TR(A) < 1 and suppose that p,v : C — A are two unital §-G-multiplicative contractive
completely positive linear maps such that ¢ and ¥ are S-O-full,

[ellp = [Wllp, (5.258)
|Top(g) —Tow(g)] < o1 for all g € H, (e5.259)
dist({p(u)), (Y(u))) < oo for all uelU. (e5.260)
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Then there exists a unitary w € A such that
[Adw o o(f) —(f)|| <€ for all f e F. (e5.261)

Proof. Let C' = limy,00(Ch, ), where C, = Py M, (5, (C(Yy)) Pn, X, is a finite CW complex,
r(n) > 1is an integer, P, € M,,)(C(Yy)) is a projection and ¢y, : Cp, — Cpy1 is a unital
homomorphism. Let ¢, o : Cp, — C be the unital homomorphism induced by the inductive
limit system. Then, for each n, ¢n 0o(Cn) = Tn(Pn) M, (n)(C(Xy))mn(F), where X, C Y, is
a compact subset and m, : M,,(C(Yy)) = M,,)(C(Xy)) is defined by 7,(f) = flx,. Let
B, = wn(Pn)MT,(n)(C’(Xn))wn(Pn), n = 1,2,.... Note that B, C B,11, n = 1,2,.... We may
write C' = US| B),. Let € > 0 and F C C be a finite subset. Without loss of generality, we may
assume that F C B, for some integer n > 1. From this it is clear that we can reduce the general

case to the case that C' = B,,. Then the result follows from and B.71 O

Corollary 5.9. Let C be a unital AH-algebra and let © : C+ \ {0} : N x Ry be a map. For any
e > 0 and any finite subset F C C, there exists o1 > 0, o9 > 0, a finite subset S C A1 \ {0}, a
finite subset P C K(C), a finite subset H C As.q. and a finite subset U C U.(K1(C)) satisfying
the following:

Suppose that A is a unital separable simple C*-algebra with TR(A) < 1 and suppose that
p, Y : C — A are two unital monomorphisms which are S-©-full such that

Pllp = [lp (e5.262)
[Top(g) —Tov(g)] < o1 for all g€H and for all T € T(A), (e5.263)
dist(p*(@), v (u)) < o9 for all ueld. (e5.264)

Then there exists a unitary w € A such that
IAdw o p(f) — Y (f)|| <€ for all € F. (€5.265)

Theorem 5.10. Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra
with TR(A) < 1. Suppose that v, : C — A are two unital monomorphisms. Then ¢ and 1) are
approximately unitarily equivalent if and only if

] = [¥] in KL(C,A) (€5.266)
g = Yy and (€5.267)
o = ol (e5.268)

Note that [p] = [¢)], ¢! = ¢ and ¢y = 14 imply that ¢* = ¢*. Thus Theorem .10 follows
from immediately.

6 The range

Definition 6.1. Let X be a compact metric space and let C = PM,(C(X))P, where P €
M, (C(X)) is a projection and P(x) > 0 for all x € X, and let A be a unital separable simple
C*-algebra with T'(A) # (). Let v : T(A) — T¢(C) be a continuous affine map. For any 7 € T'(A)
and any non-empty open set O C X, define

i (0) = sup{3(r)() s 0 < £ < 1 and suppf < O},
Since y(T'(A)) is compact, we conclude that

inf
reT(A) ty(7)(0) > 0
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for every non-empty open subset O C X.

Fix a € (0,1). There are finitely many points =1, s, .., &, € X such that U" 0(z;,a/2) D
X. Let O, be an open ball of X with center at a point 2 and with radius a. Then O, D O(z;, a/2)
for some i. Define

Aq(a) = {1I§rzl'i§nm} 'rei;l(fA) ry(ry (O(5,0/2)) (€6.269)

for all a € (0,1). It follows that
pr(Og) > Aj(a) for all a > 0. (€6.270)
Note that, if X is infinite, lim,—0 Aj(a) = 0.

Lemma 6.2. Let C be as in[61 and A be a unital separable simple C*-algebra with T(A) #
emptyset. Suppose that v : T(A) — T¢(C) is a continuous affine map. For any n > 0, 0 <
A1, Ao < 1, there exists a finite subset H C Csq. and € > 0 satisfying the following: for any
unital positive linear map L : C' — A such that

|70 L(g) —v(1)(g9)| <€ for all g € H, (€6.271)
then
tror(Or) > AMA1(a/2)/2(1 + A2) for all a > . (e6.272)
The proof of this is almost identical to that of B4l We omit it.

Lemma 6.3. Let X be a finite CW complex and let A be an infinite dimensional unital simple
C*-algebra with TR(A) < 1. Let C = PM,(C(X))P (r > 1), where P € M,(C(X)) is a
projection. Suppose that e € A is a non-zero projection. Then, there exists a non-zero projection
eg < e and a unital monomorphism h : C — egAeyg.

Proof. Without loss of generality, we may assume that X is connected. There are mutually
orthogonal and mutually equivalent non-zero projections ey, e, ...,e, < ede. Put ¢/ =37, e;.
It is well known that there exists a unital monomorphism hg : C(X) — e1Aey (see 9.5 of [15]).
This extends a monomorphism h; : M, (C(X)) — e’ Ae’ = M,(e1Aey). Let eg = hy(P). Define
h:C — egAeg by h = hilc. O

Definition 6.4. Let C and A be two unital C*-algebras. Denote by KK.(C, A)™" the set of
those elements k € K K(C, A) such that

r([1o]) = [La] and £(Ko(C)+ \{0}) C Ko(A)4 \ {0}

Denote by KL.(C, A)™" the set of those elements x € KL(C, A) such that x([1¢]) = [14] and
R(Ko(C)\ {0}) C Ko(A); \ {0}.

Now suppose that T;(C) # 0 and A is a unital simple C*-algebra with T(A) # (. Let
v : T(A) = T¢(C) be a continuous affine map. We say x and v are compatible, if, 7o k([p]) =
~(7)([p]) for every projection p € My (C). Let o : U(Moo(C))/CU (Moo (C)) — U(A)/CU(A) be
a continuous homomorphism. By (eZ1)), there is a homomorphism «g : Aff(C)/pc(Ko(C)) —
Aff(A)/pa(Ko(A)) induced by « and there is homomorphism «; : K1(C) — K1(A) induced by
a. We say « and x compatible if x|z, (c) = a1, we say K, v and « are compatible if x and  are
compatible, ¥ and « compatible and the homomorphism induced by ~ is equal to «y.
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Lemma 6.5. Let X be a finite CW complez, let n > 1 be an integer, let C = PM,(C(X))P,
where P € M, (C(X)) is a projection, and let A be a unital infinite dimensional separable simple
C*-algebra of tracial rank at most one. Suppose that k € KK (C, A)™ and v : T(A) — T;(C)
s a continuous affine map which are compatible. Let 0 > 0 and H C Cs,. be a finite subset.
Then there is a unital homomorphism h: C — A such that

[h] = Kk and (€6.273)
|70 h(c) —v(T)(c)| < o (€6.274)

for allc € H and all T € T(A).

Proof. To simplify the proof, without loss of generality, we may assume that X is connected.
There is a unital separable amenable simple C*-algebra B with TR(B) = 0 which satisfies the
UCT such that

(Ko(B), Ko(B)+, [18], K1(B)) = (Ko(A), Ko(A)+, [14], K1(A)).

Let [1] € KK (B, A)™™" be an invertible element which gives the above identity. Therefore there
is kg € KK.(C,B)"™" such that
K= Ko X [1].

Without loss of generality, we may assume that H is in the unit ball of C.

Let p € B with 7(p) < o/8 for all T € T'(B). It follows from 6.2 of [20] that there is a nonzero
projection py < p, a finite dimensional C*-subalgebra By C (1 —po)B(1—pp) with 15, = 1 —po,
a unital homomorphism h; : C' — pgBpg and a unital homomorphism hsy : C — By such that

[hl + hg] = KQ.
Put D = (1 — po)A(1 — po). Then D is a unital simple C*-algebra with TR(D) < 1. For
each t € T(D), there is a unique ¢ € T(A) such that t(d) = % for all d € D. Define

Y1t T(D) — Tf(C) by
71 (t) = (1)

for all t € T(D). It follows from Lemma 9.5 of [I5] that there exists a unital homomorphism
hs : C'— D such that

[hs] = [ha] in KK(C,A). (€6.275)

[t(h3(c)) —n(t)(c)| <o/8 (€6.276)

for all ¢ € H and for ¢t € T(D). It follows from Theorem 5.4 of [20] that there is a unital
monomorphism j : (1 — pg)B(1 — po) — (1 — eg)A(1 — ep), where [eg] = [¢]([po]) such that
] = [o]-
Now define h: C — A by h(c) = j o hi(c) ® hs(c) for all ¢ € C. One computes that
[h] = [x] and [7(h(c)) = y(T)(c)] <o

for all ¢ € H and for all 7 € T'(A).
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Lemma 6.6. Let C' be as in and let A be a unital infinite dimensional separable simple
C*-algebra with TR(A) < 1. Suppose that k € KK .(C, A)t*, v : T(A) — Ty(C) is a contin-
wous affine map and o : U(Muo(C))/CU(Mx(C)) — U(A)/CU(A) such that k,y and « are
compatible. Then, for any o1 > 0, 1 > o9 > 0, any finite subset H C Cs4. and any finite subset
UCUMn(C)) (for some integer N > 1), there exists a unital homomorphism h: C — A such
that

[h] =k, |Toh(c)—~(T)(c)| < o1 for all T € T(A) (e6.277)
and dist(h¥ (), a(@)) < op for all u e U. (e6.278)

Proof. To simplify the notation, without loss of generality, we may assume that X is connected.
Furthermore, a standard argument shows that, we can further reduce the general case to the
case that C' = C(X).

We write K1(C) = Gy @ Tor(K1(C)), where Tor(K;(C)) is the torsion subgroup of Ki(C)
and G is the free part. Fix a point £ € X, define

Co={fe€C: f(&) =0}
Then Cy C C is an ideal of C' and C/Cy = M, for some integer r > 1. We write
Ko(C) = Z[1c] & Ko(Co)-

Let A; be a unital separable amenable simple C*-algebra with UCT and with TR(A;) =
TR(A) <1 such that

(KO(A1)7 KO(A1)+7 [1A1]7 T(A1)7 pAl) = (KO(A)7 KO(A)-H [1A]7 T(A)a pA) (e 6'279)
and Ki(A;) =G @ Tor(K1(A)). (€6.280)

To simplify notation, we may assume that U = Uy U Uy, where Uy C Uy(My(C)) and Uy C

Uc(Mp(C)) are finite subsets. For each u € Uy, write u = H?:(Qi) exp(v/—1a;(u)), where a;(u) €
Mp(C) is a selfadjoint elements. Write

a;(u) = (agk’j)(u))NxN, i=1,2,...,n(u).

Write (k) ¢ (k) (k.g)
a; "+ (a; 7)* a " — (a;
Ci,k‘,j(u) — 7 2( 7 ) and dz,k,j(u) — 7 ( 7

Put
M = mac{lel], leqg (w) ], dig (W] : ¢ € H,u € Uo}.

Choose a non-zero projection e € A such that

01

m(e) < 8N2(M + 1) max{n(u) : u € Up} for all 7€ T(A).

Let ep € Ay be a projection such that [eg] = [e] using (€6.279]) and let Ay = (1 —ep)A1(1 — ep).
In what follows, we use the identification (€6.279]) Define 6; € Hom(K;(C), K;(A3)) as follows:
On Ko(C), define 01(m[lc]) = m[l — eo] for all m € Z, 01|k, (cy) = Flry(co)s on K1(C), define

O1lTor(k: (0)) = ElTor(x:(0))s P1lc, = 1d|a, - (e6.281)
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By the Universal Coefficient Theorem, there exists an element 6; € KL(C,As) which gives

the above homomorphisms. Let 6, € KL(A;, A) which gives the identification (e6.279) and
02| Tor (i1 (A1) = 1d|Tor(iy (A1) and O2]G, = K[g,- Let B = K — 02 0 0. We compute that

B([Le)) = le), Blro(co) =0, (€6.282)

Blk.(c) = 0. (€ 6.283)

Thus 8 € KK.(C,eAe)t™. It follows from[G.5 that there is a unital monomorphism g : C' — eAe
such that [pg] = S.
Choose

Hi=HU{cik;(u),di;(u): 1<k j<N1<i<n(u),uelU}.

It follows from that there exists a unital monomorphism ¢; : C' — Ay such that

[p1] = 61 and (6.284)
70 1(f) = (7))l < % (e6.285)

for all f € H; for all 7 € T(A). Note that, for u € Uy,

Au) = ‘ a;(u), (€6.286)

where a(7) = 7(a) for all a € A, ,.. Since a and 7 are compatible, we then compute that
dist (¢! (@), a(u)) < 02/8 (e6.287)
for all u € Up. Denote by U.(G1) the image of G;. Define x : U.(G1) — Aff(T'(A))/pa(Ko(A))
by
— — ot — ot 6.288
X = vy — eolvecn) — ¢ilvea)- (e6.288)

Note that U.(G1) = G1. We identify U.(G1) with the corresponding part in U.(K;(As)). By
defining x on Tor(K;(As2)) to be zero. We obtain a homomorphism x : U.(K;(A42)) —
Aff(T(A))/pa(Ko(A)). It follows from Theorem 8.6 of [20] that there exists a unital homo-
morphism hj : Ay — (1 —e)A(1 — e) such that

[h] = 02, (h1); = idpa) (€6.289)

and By, (ay) = X + 02l K, (40, (€6.290)

where we identify K;(As) with U.(As) = Us(G1) @ Tor(K1(A)) and U.(K1(A)) with K;(A). We
also identify Aff(T(As2))/pa(Ko(A2)) with Aff(T(A))/pa(Ko(A)). Note that (by (6.289),

K| S N
Hasr(r () /ataa) = am(r(a),/oa oA

Now define
h(f) =o(f) @ h1opi(f) for all feC. (€6.291)
It follows that
[h] = &, (€6.292)
|Toh(f) —~(T)(f)] < o1 for all feH and (€6.293)
dist(h*(7@), (7)) < oo for all uel. (e6.294)
O
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Lemma 6.7. Let X be a compact subset of a finite CW complex Y. Then there exists a sequence
of finite CW complex Y, D Yny1 each of which is a compact subset of Y and there exists a
contractive completely positive linear map ¢, : C(X) — C(Yy) such that

Tp ©Pn = 1dC(X)7 n= 17 27 ... and (e 6295)
Jim o (f)en(g) = n(fg)ll =0 (€6.296)

for all f,g € C(X), where 7, : C(Y,) — C(X) is the quotient map.

Proof. Let d,, \( 0 be a decreasing sequence of positive numbers. There are finitely many open
balls of Y with center in X and radius d,, covers X. Let Z,, be the union of closure of these
balls. Then Z,, is a compact subset of Y which is homeomorphic to a finite CW complex. We
may assume that Z, D Z,11. Then (by, for example, The Effros-Choi Theorem), there exists,
for each n, a contractive completely positive linear map 1, : C(X) — C(Z,) such that

Ty © 1/Jn = idC’(X)7 (e 6.297)

where 7, (f) = f|x for f € C(Z,), n=1,2,....

Let {F,} € C(X) be a sequence of increasing finite subsets of the unit ball of C'(X) so that
its union is dense in the unit ball of C'(X). Choose Y1 = Z; and ¢1 = ¢1. Let G = FL U{fg:
f.g € F1}. Choose d,, such that

[¥1(f)(@) = 1 (f)(a)] < 1/4 for all f € Gy, (€6.298)
provided that dist(z,2’) < dy, for all z, 2" € Z;. By (e6.297),
U1(f9) (@) =i (f)(2)i(g)(x) =0 (€6.299)

for all x € X. Now for any z € X,,,, there exists x € X such that dist(z, z) < d,,. Therefore, by

(€6.299) and (e6.298),

191(f9)(2) = (/) (2)P1(9)(2)] < ¥1(f9)(2) — ¢ (fg)(@)]] (€6.300)
U1 (fg)(x) — i (f) (@)1 (g) ()] (€6.301)
U1 (f)(@)h1(g)(@) — 1 (F)(2)¢1(9)(2)]| < 3/4 (€6.302)

for all f,g € F1. Choose Yy = Zy,. Define hy : C(Z1) — C(Zy,) defined by hi(f) = f|z,, for all
f € C(Z). Define ¢y : C(X) — C(Y2) by defining

@2(f) = h1 oty
Thus, by (6.300]),
le2(fg) — 2(f)e2(g)]l < 3/4 (€6.303)
for all f,g € F1. Note that
Ty © P2 = 1dg(x)- (€6.304)

Let Go =G UFoU{fg: f,g € F2}. Choose d,, such that

lp2(F)(x) = p2(f)(a')| < 1/4 for all f€ Gy, (e6.305)
provided that dist(z,2’) < d,, for all z,2’ € Y5. By (€6.297)), for any z € X,
p2(f9)(x) = p2(f)(@)p2(9)(2) (e6.306)
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Then, for any z € Z,,, there exists x € X such that dist(x,2) < d,,. Thus, by (e6.306]) and
(e6.305),

[02(f9)(2) — 02(f)(2)p(9)(2)] < 3/4 for all z € Zp,. (¢6.307)

Let hy : C(Y2) = C(Zn,) be defined by ha(f) = f|z,, for all f € C(Yz). Put Y3 = Z,,;. Define
@31 C(X) = C(Yyy) by @3(f) = hz 0 ¢2. Then

Tng © Y3 = ldC(X) (e 6308)
By (e6.307), we have that

les(f9) — e3(fes(g)|l < 3/4% (€6.309)

for all f,g € Fo. In this fashion, we obtain a sequence of contractive completely positive linear
map ¢, : C(X) = C(Yy), where Yj, = Z,, , such that

T, © Pk = idg(x) and (€6.310)
ler(£g) — er(F)er(g)ll < 3/451, (e6.311)

for all f,g € Fi, k =1,2,.... It follows that, for any f,g € C(X),
Jim o (f9) = er(Ferlg)ll = 0. (€6.312)

O
We have the following corollary.

Corollary 6.8. Let Y be a finite CW complex and P € M,.(C(Y')) be a non-zero projection for
some integer r > 1. Let X be a compact metric space of Y and let C = w(PM,(C(Y))P), where
7w M.(C(Y)) = M.(C(X)) be the quotient map defined by w(f) = f|x. Then there exists a
sequence of finite CW complex' Y DY, D Y,41 each of which is a compact subset of Y and there
exists a contractive completely positive linear map @, : C — P,(C(Yy))P, such that

Tn © op = 1ide, n=1,2,... and (e6.313)
Jim o (f)en(g) = enl(fg)ll =0 (e6.314)

for all f,g € C(X), where P, = Ply, and m, : C(Y,) — C(X) is the quotient map defined by
mn(f) = flx for all f € C(Y,).

Lemma 6.9. Let Y be a finite CW complex and P € M,.(C(Y)) be a non-zero projection for
some integer r > 1. Let X be a compact metric space of Y and let C = w(PM,(C(Y))P),
where ™ : M. (C(Y)) — M,(C(X)) is the quotient map defined by 7(f) = f|x. Suppose that
A is a unital infinite dimensional separable simple C*-algebra with TR(A) < 1. For any k €
KL(C, A)*™, any affine continuous map ~y : T(A) — T¢(C) and any continuous homomorphism
a:U(Mx(C))/CU(Mx(C)) = U(A)/CU(A) such that k, v and « are compatible, then there
is a unital homomorphism h : C — A such that

[h] =k, hy =+ and ht = a. (e6.315)
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Proof. Let Y, P,, m, and ¢, be as given by Let B, = P,M,(C(Y,))P,. Let {q,,} be a
sequence of non-zero projections such that 7(q,) < 1/n for all 7 € T(A), n = 1,2,.... Since
¢, Aq), is a unital infinite dimensional simple C*-algebra of tracial rank at most one, by [6.3]
there exists a non-zero projection g, < ¢, and a unital monomorphism ¢g, : B, — ¢nAqn,
n=12,..

Define v, : T(A) — T(By,) by

() (0) = 7(1 = gn)7(7) (70 (b)) + 7 © 0,0 (b) (€6.316)

for all b € B,, and for all 7 € T'(A).

Define s, : B, = Byny1 by sp(f) = fly, forall f € B,, n=1,2,....

Let k, = ko [m,] be in Homp(K(B,),K(A)) and let o, : U(Mx(B,))/CU(My(C)) —
U(A)/CU(A) defined by ay, = a o 7h.

Note that K;(B,) is finitely generated (i = 0,1). Let ¢, > 0, F, C B, be a finite subset
and @, C K(B,) be a finite subset such that (e,, F,, Py) is a K-triple and (e,, F,) is K K-pair
for By, n = 1,2,.... Put Q, = [m,](Pn), n = 1,2,.... We may assume that [s,|(P,) C Pni1
and U, Q,, = K(C). Let G, C C be a finite subset and let ¢,, > 0 such that (6,,Gp, Qy) is a
K-triple.

Choose, for each n, a finite subset F,, C B, such that s, (F,) C Fny1 and U2 m,(F,) is
dense in C. Choose, for each n, a finite subset H,, C (By)s.q such that s,(H,) C Hnp4+1 and
Uy (Hy) is dense in Oy 4. Choose, for each n, a finite subset U, C U(MN(n)(Bn)) (for some
integer N(n)) such that s, (U,) C Up+1 and U 7y, (Uy,) is dense in U (Mo (C)).

It follows from there is, for each n, a unital monomorphism h,, : B,, — A such that

[hn] = Fn (€6.317)
|70 hn(f) —v(7)(f)] < 1/2" for all f € H, and for all 7€ T(A) (e6.318)
and dist(h (@), an (@) < 1/2" for all u € U,, (e6.319)

n=1,2,.... Define L,, = hy o ¢,. Note that

Tn o, = idc and (6.320)
lim flon(fg) = en(flen(g)l = 0 for all f.gcC. (6.321)

Thus, without loss of generality, we may assume that ¢,, is (6,1, Gn—1)-multiplicative. It then

follows that from (e€.320) and (e6.317) that

oo eullo, = (Rulow n=1.2,... (c6.322)

By (€6.322)), (e6.318), (e6.319), combining and applying 5.5l we obtain a subsequence
hp, © ¢n, : C — A and a sequence of unitaries {uy} C A such that

IAd g, © hpyyy 0 0nyyy (F) = Ad g1 0 hy 0 05, (f)]| < 1/28 (6.323)
for all f € Fj. It follows that {Ad ug_10hp, 0@y, (f)} is Cauchy for all f € C. Define h : C' — A
by
h(f) = klim Adug_1 0 hy, oy, (f) for all fe C.
—00

It is ready to check that h satisfy all requirements of the lemma.
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Theorem 6.10. Let C be a unital AH-algebra and let A be a unital infinite dimensional sep-
arable simple C*-algebra with TR(A) < 1. For any k € KL.(C, A)tt, any affine continuous
map v : T(A) — Tr(C) and any continuous homomorphism « : U(Mx(C))/CU(Mx(C)) —
U(A)/CU(A) such that k, v and o are compatible, then there is a unital homomorphism h :
C — A such that

[h] =k, hy =7 and ht = a. (€6.324)

Proof. Write C' = lim,,_,o(By,, ¥y, ), where B, = PnMT(n)(C(Yn))Pn, Y, is a finite CW complex,
P, € Mr(n)(C(Yn)) is a projection and v, : B, — Bp+1 is a unital homomorphism. Denote
by Ym0 : B, — C the unital homomorphism induced by the inductive limit system. Then
Pnoo(Bn) = QuM,y(n)(C(Xn))Qn, where X, C Y, is a compact subset, @, = m,(F,) and
where 7, : M,y (C(Yn)) = M) (C(Xy)) is the quotient map defined by m,(f) = f|x,. Put
C = ¢n,o0(Bn). We will identify C,, with Q,M, (,)(C(X,))Qn and write C = U2, C,,, where

Cn = QnM, r(n) ( ( )QTH
Denote by 1, : C), — Cyh41 and 1, o : C, = C be the embedding, respectively. Let x, =

KO [tn,00] bein Homp (K (Cy), K(A)) and let o, : U(Moo(Cy,))/CU (M (C)) — U(A)/CU(A) be
defined by o, = a0 z}l,oo. Let (tn,00)g : Tt(C) — T3(Cy) induced by 1, and define v, : T(A) —
T¢(Cp) by (tn,00)s07- Put Qp = [1n,00](Prn), n = 1,2,.... We may assume that U2, Q,, = K(C).
Choose, for each n, a finite subset F,, C C,, such that f C Fpy1 and U2 Fy, is dense in C. It
follows from [6.9] there is, for each n, a unital monomorphism ¢,, : C,, — A such that

[on] = Fin, (€n)g = and @, = oy (e6.325)
n =1,2,.... By applying 510} for each n, there exists a unitary u, € A (with up = 1) such that
|Ad up, © i1 02, (f) — Adup—1 0 pn(f)]] < 1/2" for all f € F,, (€6.326)

n=1,2,.... We obtain a unital monomorphism h : C' — A such that

h(f) = lim Aduy o i1 0,(f) for all feC. (€6.327)

n—oo

One checks that h meets all requirements of the theorem.
O

Corollary 6.11. Let C be a unital AH-algebra and let A be a unital infinite dimensional sepa-
rable simple C*-algebra with TR(A) < 1. For any k € KL.(C, A)™™, any affine continuous map
v : T(A) = T¢(C) and any continuous homomorphism « : K1(C) — Aff(T(A))/Ko(A) such
that k, vy are compatible, then there is a unital homomorphism h : C — A such that

[h] =&, hy=~ and hl =a. (€6.328)
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